hetero diatomics hf due to higher electronegativity of f
play

Hetero-Diatomics: HF Due to higher electronegativity of F than H, - PowerPoint PPT Presentation

Hetero-Diatomics: HF Due to higher electronegativity of F than H, the electron distribution is lopsided Hetero-Diatomics: HCl For Cl 3p states close in energy to the 1s of H Hetero-Diatomics: HBr For Cl 4p states close (higher) in energy to the


  1. Hetero-Diatomics: HF Due to higher electronegativity of F than H, the electron distribution is lopsided

  2. Hetero-Diatomics: HCl For Cl 3p states close in energy to the 1s of H

  3. Hetero-Diatomics: HBr For Cl 4p states close (higher) in energy to the 1s of H

  4. Hetero-Diatomics: CO

  5. Hybridization Linear combination of atomic orbitals within an atom leading to more effective bonding 2pz 2px 2py 2px 2py α 2s- β 2pz α 2s+ β 2pz 2s The coefficients α and β depend on field strength Hybridization is close to VBT approach. Use of experimental information All hybridized orbitals are equivalent and are ortho-normal to each other

  6. s+p (sp)Hybridization 2 equivalent hybrid orbitals of the same energy and s and p orbital of the Same atom! shape (directions different) Not same as S (overlap) 1   ψ = ψ + ψ   2 s p 2 1   ψ = ψ − ψ   1 s p 2 Linear geometry with Hybridized atom at the center Contribution from s =0.5; contribution from p =0.5 Have to normalize each hybridized orbital

  7. s+p (sp)Hybridization

  8. s+p (sp)Hybridization The other p-orbitals are available for π bonding

  9. Molecular orbitals of BeH2

  10. Molecular orbitals of BeH2 ( ) ϕ = ψ − ψ − ψ u * Be H H c c A B pz σ 4 2 3 1 s 1 s ( ) ϕ = ψ − ψ + ψ H H g * Be c c A B s σ 2 2 1 1 s 1 s ( ) ϕ = ψ + ψ − ψ u Be H H c c A B pz σ 3 2 4 1 s 1 s ( ) ϕ = ψ + ψ + ψ g Be H H c c A B s σ 1 2 2 1 s 1 s

  11. Molecular orbitals & Hybridization in BeH2 ( ) ϕ = ψ + ψ − ψ H H u Be c c A B pz σ 3 2 4 1 s 1 s ϕ + ϕ ϕ − ϕ g u g u ( ) σ σ σ σ ϕ = ψ + ψ + ψ H H g Be c c A B s σ 1 2 2 1 s 1 s

  12. s+2p (sp2)Hybridization px and py can be combined with s to get three 3 equivalent hybrids at 120o to each other y y y 30o 30o 30o x x x 30o 30o 30o − + cos(60) cos(30) s p p + s p x y x − − cos(60) cos(30) s p p x y

  13. s+2p (sp2)Hybridization 1 2 ψ = ψ + × ψ + ψ 0 1 s px py 3 3 1 1 1 ψ = ψ + ψ − ψ 2 s px py 3 2 6 1 1 1 ψ = ψ − ψ − ψ 3 s px py 3 2 6 The other p-orbital are available for π bonding

  14. s+2p (sp2)Hybridization

  15. s+3p (sp3)Hybridization 1 1 1 1 ψ = ψ + ψ + ψ + ψ 1 s px py pz 2 2 2 2 1 1 1 1 ψ = ψ − ψ − ψ + ψ 2 s px py pz 2 2 2 2 1 1 1 1 ψ = ψ + ψ − ψ − ψ 3 s px py pz 2 2 2 2 1 1 1 1 ψ = ψ − ψ + ψ − ψ 4 s px py pz 2 2 2 2 1 3 ψ = ψ + × ψ + × ψ + ψ 0 0 1 s px py pz 2 2 How to calculate the coefficients? 1 2 1 ψ = ψ + ψ + × ψ − ψ 0 2 s px py pz Use orthogonality of hybrid orbitals 2 3 2 3 and normalization conditions 1 1 1 1 ψ = ψ − ψ + ψ − ψ 3 s px py pz There is no unique solution 2 6 2 2 3 1 1 1 1 ψ = ψ − ψ − ψ − ψ 4 s px py pz 2 6 2 2 3

  16. s+3p (sp3)Hybridization No other p-orbital is available for π bonding

  17. Asymmetrical Hybridization: Water Molecule Electronic Configuration of ‘O’ atom: 1s22s22pz22px12py1 φ = + ψ = + + 1 2 ( ) 2 2 2 c s c p O a s a p a p 1 1 2 1 1 2 3 H xO x y A ψ = + + φ = + ( ) 2 2 2 1 2 O a s a p a p c s c p 2 4 5 6 2 3 4 x y H yO B 104.5o ψ = × + × + × ( ) 0.45 2 0.71 2 0.55 2 O s p p 1 x y ψ = × − × + × ( ) 0.45 2 0.71 2 0.55 2 O s p p 2 x y

  18. Asymmetrical Hybridization: Water Molecule Electronic Configuration of ‘O’ atom: 1s22s22pz22px12py1 ψ = × + × + × ( ) 0.45 2 0.71 2 0.55 2 O s p p 1 x y Form bonds with ψ = × − × + × ( ) 0.45 2 0.71 2 0.55 2 O s p p two Hydrogen atoms 2 x y ψ = × − × ( ) 0.77 2 0.63 2 O s p 3 y ψ = Two lone pair electrons ( ) 2 O p 4 z

  19. Asymmetrical Hybridization: Water Molecule Electronic Configuration of ‘O’ atom: 1s22s22pz22px12py1 ψ = × + × + × ( ) 0.45 2 0.71 2 0.55 2 O s p p 1 x y Form bonds with ψ = × − × + × ( ) 0.45 2 0.71 2 0.55 2 O s p p two Hydrogen atoms 2 x y ψ = × − × ( ) 0.77 2 0.63 2 O s p 3 y ψ = Two lone pair electrons ( ) 2 O p 4 z NOT Equivalent!

  20. Asymmetrical Hybridization: Water Molecule Electronic Configuration of ‘O’ atom: 1s22s22pz22px12py1 ψ = × + × + × ( ) 0.45 2 0.71 2 0.55 2 O s p p Form bonds with 1 x y two Hydrogen atoms ψ = × − × + × ( ) 0.45 2 0.71 2 0.55 2 O s p p 2 x y ψ = × − × ( ) 0.77 2 0.63 2 O s p 3 y Two lone pair electrons ψ = ( ) 2 O p 4 z NOT Equivalent! 104.5o ψ = × − × + × ( ) 0.55 2 0.45 2 0.71 2 O s p p 3 y z ψ = × − × − × ( ) 0.55 2 0.45 2 0.71 2 O s p p 4 y z

  21. Asymmetrical Hybridization: Water Molecule ψ = × + × + × ( ) 0.45 2 0.71 2 0.55 2 O s p p Form bonds with 1 x y ψ = × − × + × ( ) 0.45 2 0.71 2 0.55 2 O s p p two Hydrogen atoms 2 x y ψ = × − × + × ( ) 0.55 2 0.45 2 0.71 2 O s p p 3 y z Lone pair electrons ψ = × − × − × ( ) 0.55 2 0.45 2 0.71 2 O s p p 4 y z Lone pair electrons have more ‘ s ’ character than the bonding orbitals

  22. Asymmetrical Hybridization: Water Molecule ψ = × + × + × ( ) 0.45 2 0.71 2 0.55 2 O s p p 1 x y Bond pairs ψ = × − × + × ( ) 0.45 2 0.71 2 0.55 2 O s p p 2 x y ψ = × − × + × ( ) 0.55 2 0.45 2 0.71 2 O s p p 3 y z Lone pairs ψ = × − × − × ( ) 0.55 2 0.45 2 0.71 2 O s p p 4 y z 0.55 0.55 0.71 0.71 θ =104.47 -1 (0.55/0.71) θ '=tan =37.76 -1.0 -0.5 0.0 0.5 1.0

  23. s-p3-d2 & s-p3-d Hybridization Sp3d2 Octahedral Sp3d Trignoal bipyramidal

  24. Hybridization and Geometry

  25. Do Orbitals Really Exist? Tomographic image of HOMO of N2 Nature; Volume 342; Year 2004; 867-871

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend