helical spin order in srfeo 3 and
play

Helical Spin Order in SrFeO 3 and BaFeO 3 Zhi Li Yukawa Institute - PowerPoint PPT Presentation

Helical Spin Order in SrFeO 3 and BaFeO 3 Zhi Li Yukawa Institute for Theoretical Physics (YITP) Collaborator: Robert Laskowski (Vienna Univ.) Toshiaki Iitaka (Riken) Takami Tohyama (YITP) Z. L. et al., PRB, 85, 134419 (2012) Z. L. et al.,


  1. Helical Spin Order in SrFeO 3 and BaFeO 3 Zhi Li Yukawa Institute for Theoretical Physics (YITP) Collaborator: Robert Laskowski (Vienna Univ.) Toshiaki Iitaka (Riken) Takami Tohyama (YITP) Z. L. et al., PRB, 85, 134419 (2012) Z. L. et al., PRB, 86, 094422 (2012) 2013.2.12@GCOE symposium ,Kyoto University

  2. Outline 1. Introduction 2. Motivation and Purpose 3. Helical spin order in BaFeO 3 by first principles and model calculation 4. Phase transition driven by pressure 5. Open question: Helimagnet under magnetic field 5. Conclusion

  3. Cubic provskite A FeO 3 O Fe A =Ca, Sr, Ba A 2+ O 2- A Fe 4+ high valence 3d 4 Zaanen-Sawatzky-Allen diagram [Can. J. Phys. 65, 1292 (1987)] [A. E. Bocquet et al ., PRB 45 , 1561 (1992)] U eff U eff = E (3d 5 ) + E (3d 3 )-2 E (3d 4 ) ~ 7eV cuprates A FeO 3 D eff = E (3d 5 L) - E (3d 4 ) p-band ~ - 3eV metal negative D material D eff

  4. Introduction Hallmark of AFeO 3 (A=Ca, Sr, Ba):Helical spin order and p -type metal, i.e. O2 p electron makes main contribution to conductivity In spherical coordinate, spin moment as :       (sin cos , sin sin , cos ) S S i i i i i i For helical spin order, the constraint is: q        0 r i i i  Propagating vector defined in reciprocal space q    ( 1 , 0 , 0 ) q A-type helical spin    ( 1 , 1 , 1 ) G-type helical spin q

  5. Motivation and Purpose Experiment: Lattice parameter SrFeO 3 : 3.85 Å T N (K) q (2 π /a) BaFeO 3 :3.97 Å CaFeO 3 115 0.167(1,1,1) BaFeO 3 SrFeO 3 134 0.112(1,1,1) BaFeO 3 110 0.06(1,0,0) (*) A-type N. Hayashi et al., Angew. Chem. Int. Ed. 50, 12547 (2011)

  6. DFT calculation • Helical spin order predicted by local spin density approximation plus Hubbard U (LSDA+U) with generalized Bloch boundary condition 20 10 U=3.0eV, J=0.6eV U=3.0eV, J=0.6eV 16 SrFeO3-A 8 BaFeO3-A SrFeO3-G BaFeO3-G 12 6 D E(  )(meV) Physics D E(  )(meV) behind the 4 8 difference 2 between 4 SrFeO 3 0 and 52T 0 BaFeO 3 ? -2 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20  

  7. DFT calculation The density of state (DOS) of FM state in BaFeO 3 is calculate by LSDA+U, U=3.0eV and J=0.6eV 1.O2 p makes the main contribution to density around the Fermi Level 4 2. Half-metallic 2 0 3. The system can be simplified as -2 t2g eg -4 conducting electron coupled to (a) DOS(states/eV/Cell) -6 4 localized electron by Hund coupling O2p Hole 2 0 E F (b) -2 -6 -4 -2 0 2 4

  8. Model calculation It is reasonable to understand the calculated result from the double exchange model.   H H H dp SE SrFeO 3 BaFeO 3    H J S S SE SE i j   ij M. Mostovoy, Phys. Rev. Lett. 94, 137205 (2005)

  9. Phase transition driven by pressure • Lattice effect FM HM FM T. Kawakami et al., unpublished FM HM

  10. Phase transition driven by pressure • Lattice effect by calculation (a) SrFeO 3 15 24 BaFeO 3 (a) 3.97-G LDA+U 3.85-G LSDA+U 3.85-G U=4.0 eV, J=0.9 eV 3.80-G U=4.0 eV, J=0.9 eV 10 16 3.80-G 3.75-G 3.75-G 3.70-G 3.70-G 5 8 D )=E(  )-E(0) (meV) 0 D (meV) 0 -5 (b) (b) 6 10 3.97-A 3.85-A 3.85-A 3.80-A 3.80-A 3.75-A 3.75-A 3.70-A 3 5 3.70-A 0 0 0.00 0.04 0.08 0.12 0.16 0.20  0.00 0.04 0.08 0.12 0.16 0.20 

  11. Phase transition driven by pressure DOS 9 BaFeO 3 (a) 3.5 LSDA+U 6 U=4.0 eV, J=0.9 eV  2 3 ( ) pd 3.4  E D D 0 M (  B/Fe) DOS (states/eV/Cell) -3 3.3  4 ( ) a=3.97 Å pd  E S (b) t2g 4 3.97 D 2 eg U 3.85 O2p 3.2 2 3.80 3.75 0 3.1 3.70 local moment -2 a=3.70 Å 0.00 0.04 0.08 0.12 0.16 0.20  -8 -6 -4 -2 0 2 Energy(eV)

  12. Open question magnetic phase diagram and electronic transport in helimagnet SrFeO 3 under external field MnSi S. Mühlbauer et al ., Science, 323,915(2009) S. Ishiwata et al ., Phys. Rev. B 84, 054427 (2011)

  13. Conclusion 1. Both SrFeO 3 and BaFeO 3 present helical spin order at ambient pressure resulting from the competing double exchange between conducting electron and superexchange between localized electron, though the wave vector in BaFeO 3 is shorter because of weakened double exchange resulting from larger lattice parameter. 2. Ferromagnetic phase transition will happen in both SrFeO 3 and BaFeO 3 under high pressure because of enhanced hybridization

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend