heavy flavor and jet production at lhcb
play

Heavy Flavor and Jet Production at LHCb Mike Williams on behalf of - PowerPoint PPT Presentation

Heavy Flavor and Jet Production at LHCb Mike Williams on behalf of the LHCb Collaboration Department of Physics & Laboratory for Nuclear Science Massachusetts Institute of Technology January 12, 2016 The Large Hadron Collider Outline {


  1. Heavy Flavor and Jet Production at LHCb Mike Williams on behalf of the LHCb Collaboration Department of Physics & Laboratory for Nuclear Science Massachusetts Institute of Technology January 12, 2016

  2. The Large Hadron Collider Outline { LHCb overview open beauty & charm jets (V+j,b-jets,c-jets,...) quarkonia fixed-target running

  3. LHCb Detector LHCb is a forward Spectrometer (2 < η < 5) DLL 1 JINST 3 (2008) S08005 ε RICH 0.8 Int.J.Mod.Phys. A 30(2015) 1530022 DLL muDLL 0.6 1.4 Efficiency LogL(K - ) > 0 � � LHCb Data 0.4 � � 1.2 LogL(K - ) > 5 � � � � (a) 0.2 1 LHCb 0.8 0 K K � � 0.005 0.01 ( ) ℘ π → µ 0.6 DLL 0.4 MUON 0.2 � � K � � 0 stuff 20 40 60 80 100 Momentum (GeV/c) VELO CALO 100 m] LHCb 90 µ resolution [ 80 70 60 50 x IP 40 Tracking 30 Magnet 20 2012 data 10 Simulation 0 0 0.5 1 1.5 2 2.5 3 -1 1/ p [GeV c ] 3 T

  4. LHCb Trigger LHCb 2015 Trigger Diagram 40 MHz bunch crossing rate Precision measurements benefit greatly from using the final (best) reconstruction L0 Hardware Trigger : 1 MHz in the online event selection -- need real- readout, high E T /P T signatures time calibration! 450 kHz 400 kHz 150 kHz h ± µ/µµ e/ γ JINST 8 (2013) P04022 Heavy use of machine Software High Level Trigger learning algorithms Partial event reconstruction, select all tracks p T > 0.5 GeV throughout the Run 1 displaced tracks/vertices and dimuons (no IP requirements) and Run 2 trigger. same calibration Buffer events to disk, perform online V.Gligorov, MW, JINST detector calibration and alignment constants used online & offline 8 (2012) P02013. Full offline-like event selection, mixture full reconstruction, offline-like of inclusive and exclusive triggers particle ID, track quality, etc. 12.5 kHz Rate to storage Plan to move to a triggerless-readout system in Run 3! 4

  5. LHCb Detector pixel silicon strip ECAL Cherenkov drift tube HCAL muon CMS LHCb Complimentary kinematical coverage to CMS & ATLAS. 5

  6. LHCb Physics Core physics program involves searching for BSM physics in the decays of heavy-flavor hadrons -- but their production is also of great interest! 7 10 LHCb 6 10 ATLAS/CMS Tevatron 5 10 HERA fixed target ] 2 4 [GeV 10 Q 2 ( x ) = e ± 2 y x 2 s 3 2 10 Q 2 10 10 1 − 6 − 5 − 3 − 4 − 2 − 1 10 10 10 10 10 10 1 x LHCb probes unique regions of (x,Q) so there are many measurements we can (potentially) make that are sensitive to (largely unknown) PDFs*. *PDFs means “parton distribution functions” throughout this talk. 6

  7. Open Charm σ (cc)[13TeV] shown @ EPS (2015) within a week of recording the data; it was measured using online-reconstructed data. Excellent probe of the small-x gluon PDF. <x 1 > ~ 0.05, <x 2 > ~ 2e-5 × 10 3 ( d 2 σ ) / ( d y d p T ) · 10 − m [ µ b / ( GeV c − 1 )] D 0 data Candidates / ( 1 MeV / c 2 ) LHCb D 0 POWHEG+NNPDF3.0L LHCb 10 3 150 Fit √ s = 13TeV √ s = 13 TeV FONLL 10 2 Sig. + Sec. GMVFNS Comb. bkg. 10 1 2 . 0 < y < 2 . 5 , m = 0 100 10 0 10 − 1 2 . 5 < y < 3 . 0 , m = 2 10 − 2 50 10 − 3 3 . 0 < y < 3 . 5 , m = 4 10 − 4 10 − 5 0 3 . 5 < y < 4 . 0 , m = 6 1800 1850 1900 10 − 6 m ( K − π + ) [ MeV / c 2 ] 10 − 7 10 − 8 4 . 0 < y < 4 . 5 , m = 8 LHCb-PAPER-2015-041 Results also published for D + , 10 − 9 D s , D* at both 7 and 13 TeV. 0 2 4 6 8 10 12 14 p T [ GeV / c ] POWHEG+NNPDF [1506.08025], FONLL [1507.06197], )] GMVFNS [1202.0439] 7

  8. Open Beauty σ (bb)[13TeV] also shown at EPS, and previously measured at lower energies. LHCb-PAPER-2015-037: JHEP 10 (2015) 172 )] Candidates per 0.2 ps c Data LHCb 5 LHCb 10 ) [nb/(GeV/ Total fit -1 s = 13 TeV, L =3.05 pb -1 int s = 13 TeV, L =3.05 pb J/ ψ -from- b 3 < y < 3.5 int 2 4 Prompt J/ 10 ψ 10 2 < p < 3 GeV/ c Wrong PV T Background 3 10 T 2 10 10 p d 2.0< y <2.5 y 2.5< y <3.0 10 /(d 3.0< y <3.5 σ 3.5< y <4.0 1 2 1 d 4.0< y <4.5 -10 -8 -6 -4 -2 0 2 4 6 8 10 0 5 10 t [ps] � � z z J/ ψ − z PV × M J/ ψ p ( J/ ) [GeV/ c ] ψ t z = , T p z The pseudo-lifetime distribution of J/ ψ ’s is fitted to determine both the prompt and “from b” content. LHCb has also measured production of many open- beauty meson and baryon species separately. See http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_all.html for all LHCb publications. 8

  9. Example Impact Impact of 7 TeV prompt-charm* results on the low-x gluon PDF: Gauld, Rojo, Rittoli, Talbert [1506.0825] NNPDF3.0 NLO =0.118 2 2 2 α ( g(x,Q ) ) for Q =4 GeV , NNPDF3.0 NLO Δ s 16 200 0 +- no LHCb D ,D data 0 +- no LHCb D ,D data 180 14 0 +- with LHCb D ,D data (wgt) Percentage PDF uncertainty 0 +- with LHCb D ,D data 0 +- 160 with LHCb D ,D data (unw) 12 ) 140 2 = 4 GeV 10 120 8 100 2 6 g ( x, Q 80 60 4 40 2 20 0 0 − 6 − 5 4 − 3 2 1 − 6 − 5 4 − 3 2 1 − − − − − − 10 10 10 10 10 10 10 10 10 10 10 10 x x See also Gauld et al [1511.06346] for updated prompt atmospheric neutrino flux predictions for IceCube constrained by LHCb prompt-charm data. *LHCb-PAPER-2012-041: Nucl. Phys. B871 (2013) 1 9

  10. Vector Boson + Jet Jets @ LHCb: anti-k T , R=0.5, particle flow. First LHCb jet paper provides differential measurements of Z+jet production: LHCb-PAPER-2013-058: JHEP 01 (2014) 33 [1/GeV] -1 Z 10 σ dy 1.4 Data (stat.) d Data (stat.) LHCb LHCb Data (tot.) 1 σ Data (tot.) jet 1.2 p > 20 GeV jet POWHEG + PYTHIA: p > 10 GeV T POWHEG + PYTHIA: T s = 7 TeV Data O MSTW08, ( α ) jet -2 s = 7 TeV Data s 10 σ T 1.0 MSTW08, O ( ) α MSTW08, O ( 2 ) α s p s d O 2 MSTW08, ( α ) 2 d CTEQ10, O ( α ) s s 2 CTEQ10, O ( ) NNPDF 2.3, O ( 2 ) α α 1 σ 0.8 s s 2 NNPDF 2.3, O ( ) α s 0.6 -3 10 0.4 0.2 -4 10 0.0 20 40 60 80 100 120 140 2.0 2.5 3.0 3.5 4.0 4.5 jet p [GeV] y Z T σ (W + j)/ σ (Zj) and σ (W - j)/ σ (Zj) also measured integrated over LHCb acceptance for p T (j) > 20 GeV; these also agree with NLO SM predictions. LHCb-PAPER-2015-021 PRD 92 (2015) 052001 Run 1 differential W+jet measurements are in preparation. Such measurements in Runs 2 & 3 will enable strongly constraining d/u at large-x. Farry, Gauld [1505.01399] 10 1.2

  11. Jet Tagging Jet Tagging Use a SV-based algorithm to identify b and c jets (leveraging LHCb VELO): JINST 10 (2015) P06013 LHCb-PAPER-2015-016 example SV feature: “corrected mass” 1 ) candidates c | LHCb data b 1000 LHCb BDT( 10000 data 0.5 beauty 800 b SV features used c 600 0 light parton in 2 BDTs udsg charm 5000 400 -0.5 200 Initial (no-tagging) sample: D +jet 70% light parton, 22% charm, 8% beauty. 0 0 -1 -1 -0.5 0 0.5 1 0 2 4 6 8 10 SV M [GeV] BDT( bc | udsg ) cor candidates Performance validated & calibrated using large heavy-flavor-enriched jet data samples. Two-D BDT distributions fitted to extract SV-tagged jet flavor content; c-jet and b-jet yields each precisely determined simultaneously. 11

  12. W+b & W+c W+charm production probes the strange content of the proton. In the forward region, this includes large-x s vs s-bar. W + c -jet PRD 92 (2015) 052001 s W LHCb-PAPER-2015-021 8TeV LHCb g c MCFM (NLO) W+c W+b W + b -jet q i W 7TeV b 0 5 -0.25 0 0.25 0.5 (Wq)/ (Wj) [%] Charge Asymmetry σ σ q j b Expect ~10x larger stats in Run 2; will be able to probe s vs s-bar PDFs using differential measurements of W+c. 12

  13. Top Top production in the forward region probes the large-x gluon PDF and may be more sensitive to BSM. Kagan, Kamenik, Perez, Stone [1103.3747] LHCb made the first observation of forward top production in Run 1: <x 1 > ~ 0.2, <x 2 > ~ 0.02 PRL 115 (2015) 112001, LHCb-PAPER-2015-022 8TeV Results for σ (tt+t+t-bar): LHCb MCFM (NLO) σ (top)[7 TeV] = 239 ± 53 (stat) ± 33 (syst) ± 24 (theory) fb , 7TeV σ (top)[8 TeV] = 289 ± 43 (stat) ± 40 (syst) ± 29 (theory) fb . 100 200 300 400 (top) [fb] σ Expect ~20x more stats in Run 2; will explore separating pair and single-top production, and differential measurements. Should reduce the large-x gluon PDF uncertainty by ~20% [Gauld, 1311.1810]. 13

  14. Z+c Whether there exists “intrinsic” (non-perturbative) charm content in the proton has long been debated. LHCb can say a lot here in Runs 2 and 3. c Z Boettcher, Ilten, MW [arxiv:1512.06666] ) Zj s = 14 TeV ( ∫ -1 σ Ldt = 15 fb )/ 0.08 Zc ( σ 0.06 g c c Z 0.04 CT14NNLO BHPS1 BHPS2 SEA1 SEA2 CT14NNLO 4.5 3 2 2.5 3 3.5 4 4.5 2 IC 1 g c 4.5 2 2.5 3 3.5 4 4.5 ) y ( Z ) Also effects Higgs production by ~2% (more for H+c), direct dark matter detection (assuming H exchange), and prompt atmospheric neutrino rates. 14

  15. PDFs Summary small-x gluon large-x gluon intrinsic charm c Z large-x d/u s vs s-bar et s W W g c g g c 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend