hadronic vacuum polarization with twisted mass fermions
play

Hadronic Vacuum Polarization with Twisted Mass Fermions Marcus - PowerPoint PPT Presentation

Hadronic Vacuum Polarization with Twisted Mass Fermions Marcus Petschlies ETMC Helmholtz-Institut f ur Strahlen- und Kernphysik, Rheinische Friedrich-Willhelms-Universit at Bonn First Workshop on the g 2 Initiative QCenter, Fermilab,


  1. Hadronic Vacuum Polarization with Twisted Mass Fermions Marcus Petschlies ETMC Helmholtz-Institut f¨ ur Strahlen- und Kernphysik, Rheinische Friedrich-Willhelms-Universit¨ at Bonn First Workshop on the g − 2 Initiative QCenter, Fermilab, June 4 2017 Marcus Petschlies (HISKP) HVP @ ETMC g − 2 Initiative 1 / 26

  2. Outline Motivation ◮ Twisted Mass fermions ◮ Setup for N f = 2 and N f = 2 + 1 + 1 HVP @ ETMC ◮ results for N f = 2 + 1 + 1 ◮ initial results for N f = 2 physical point ensemble ◮ current work for tm+clover at physical pion mass Summary & Outlook ◮ g-2 @ ETMC Project status ◮ Agenda Marcus Petschlies (HISKP) HVP @ ETMC g − 2 Initiative 2 / 26

  3. Motivation - Twisted Mass Lattice QCD various gauge field ensembles ◮ N f = 2 twisted mass ◮ N f = 2 + 1 + 1 twisted mass ◮ N f = 2 twisted mass + clover @ m π ◮ N f = 2 + 1 + 1 twisted mass + clover @ m π comprehensive software suite for solving Dirac equation and Wick contractions ◮ tmLQCD ( solvers, exact & inexact deflation ) [Jansen and Urbach, 2009, Abdel-Rehim et al., 2013] ◮ DDalphaAMG (adaptive multi-grid solver with tm support, port to GPUs) [Alexandrou et al., 2016] ◮ cvc code package ( various Wick contractions ) automatic O ( a ) improvement of physical observables in the continuum limit in particular renormalized vacuum polarization function Π R ( Q 2 ) and a hvp µ parity and SU (2) isospin symmetry breaking at non-zero lattice spacing SU (2) → U (1) 3 ◮ m ± π � = m 0 π ◮ � J up µ J up ν � � = � J dn µ J dn ν � by lattice artefacts Marcus Petschlies (HISKP) HVP @ ETMC g − 2 Initiative 3 / 26

  4. Motivation - Twisted Mass Lattice QCD (degenerate) light quark action ( N f = 2) � D W + m q + i µ l γ 5 τ 3 � � S l = χ l ¯ χ l ( x ) (1) x D W = 1 � a � ∇ f µ + ∇ b 2 ∇ b µ ∇ f � � 2 γ µ − µ − m cr µ O ( a ) improvement at maximal twist : m q = m 0 − m cr → 0 Noether current for J em µ � J µ ( x ) = 1 χ l ( x ) ( γ µ − 1) U µ ( x ) χ l ( x + a ˆ ¯ µ ) 2 � µ ) ( γ µ + 1) U † + ¯ χ l ( x + a ˆ µ ( x ) χ l ( x + a ˆ µ ) Z V = 1 � � � J µ ( x ) J ν ( y ) � + a − 3 δ (4) 0 = ∂ b x , y δ µν � C ν ( y ) � µ � �� � Π µν ( x , y ) exact at non-zero lattice spacing Marcus Petschlies (HISKP) HVP @ ETMC g − 2 Initiative 4 / 26

  5. Motivation - Twisted Mass Lattice QCD (non-degenerate) heavy quark action ( . . . + 1 + 1) D W + m q + i µ σ γ 5 τ 1 + µ δ τ 3 � � � S h = χ h ¯ χ h ( x ) (2) x µ σ τ 1 and µ δ τ 3 break isospin symmetry completely − → no conserved vector current for strange and charm Osterwalder-Seiler ( = mixed action) setup [Frezzotti and Rossi, 2004] � � ¯ D W + m q + i µ f γ 5 τ 3 � S val � = ψ f ψ f ( x ) h f = s , c x µ s , µ c tuned by physical value of 2 m 2 K − m 2 PS and m D µ ∼ ¯ (valence) Noether currents J f ψ f ψ f ; automatic O ( a ) remains valid Marcus Petschlies (HISKP) HVP @ ETMC g − 2 Initiative 5 / 26

  6. HVP from tmLQCD and N f = 2 + 1 + 1 consider hadronic leading-order ∆ α QED ( Q 2 ) ∝ Π γ ( Q 2 ) � � � Q 2 �� H 2 � Q 2 � � 5 + 1 + 4 Q 2 · ∆ α hvp QED ( Q 2 ) = − 4 πα 0 9 Π ud 9 Π s 9 Π c . R R R H 2 phys (3) inter-/extrapolation, Π(0) M N − 1 g 2 i m 2 � � Π f low ( Q 2 ) = a j ( Q 2 ) j i i + Q 2 + m 2 i =1 j =0 B − 1 C − 1 � � b k ( Q 2 ) k + Π f high ( Q 2 ) = log( Q 2 ) c l ( Q 2 ) l k =0 l =0 Π f ( Q 2 ) = (1 − Θ( Q 2 − Q 2 low ( Q 2 ) + Θ( Q 2 − Q 2 match ))Π f match )Π f high ( Q 2 ) chiral and continuum extrapolation ∆ α hvp QED ( Q 2 )( m PS , a ) = A + B 1 m 2 PS (+ . . . ) + C a 2 Marcus Petschlies (HISKP) HVP @ ETMC g − 2 Initiative 6 / 26

  7. HVP from tmLQCD with N f = 2 + 1 + 1 a [ fm ] m PS [MeV] L [fm] m PS L 0.003 0 . 061 227 2.9 3.3 0 . 061 318 2.9 4.7 0 . 061 387 1.9 3.7 ∆ α hvp , ud (1 GeV 2 ) 0.0025 0 . 078 274 2.5 3.5 0 . 078 319 2.5 4.0 0.002 0 . 078 314 3.7 5.9 N f = 2 result, standard fit 0 . 078 393 2.5 5.0 N f = 2 result, Pad´ e fit 0.0015 a = 0 . 086 fm, L = 2 . 8 fm 0 . 078 456 2.5 5.8 a = 0 . 078 fm, L = 2 . 5 fm a = 0 . 078 fm, L = 1 . 9 fm 0 . 078 491 1.9 4.7 a = 0 . 078 fm, L = 3 . 7 fm 0 . 086 283 2.8 4.0 a = 0 . 061 fm, L = 1 . 9 fm 0.001 a = 0 . 061 fm, L = 2 . 9 fm 0 . 086 323 2.8 4.6 0 0.05 0.1 0.15 0.2 0.25 0 . 086 361 2.8 5.1 m 2 � GeV 2 � PS statistics O (250 / 150 / 150) gauge configurations for up-down / strange / charm quark Marcus Petschlies (HISKP) HVP @ ETMC g − 2 Initiative 7 / 26

  8. HVP from tmLQCD with N f = 2 + 1 + 1 and a hvp l 0.01 0.008 QED ( Q 2 ) 0.006 ∆ α hvp 0.004 0.002 lattice data linearly extrapolated to m π in CL ∆ α from Jegerlehner’s alphaQED package 0 0 2 4 6 8 10 Q 2 � GeV 2 � a hlo tmLQCD disp. analyses l 1 . 866 (10) (05) · 10 − 12 [Nomura and Teubner, 2013] 1 . 782 (64) (85) · 10 − 12 e 6 . 91 (01) (05) · 10 − 8 [Jegerlehner and Szafron, 2011] 6 . 78 (24) (16) · 10 − 8 µ 3 . 38 (4) · 10 − 6 [Eidelman and Passera, 2007] 3 . 41 (8) (6) · 10 − 6 τ Marcus Petschlies (HISKP) HVP @ ETMC g − 2 Initiative 8 / 26

  9. Quark-disconnected contribution connected, combined isospin components 0.02 disconnected, isospin 0 component disconnected, isospin 1 component 0 0.004 -0.02 V Π( Q 2 ) 0 -0.04 -0.004 Z 2 -0.06 0 0.2 0.4 0.6 0.8 1 -0.08 -0.1 -0.12 0 0.2 0.4 0.6 0.8 1 1.2 Q 2 / GeV 2 isovector and isoscalar contribution Π 3 µν ( x , y ) = � J 3 µ ( x ) J 3 ν ( y ) � disc tm only , with one − end trick Π 0 µν ( x , y ) = � J 0 µ ( x ) J 0 ν ( y ) � disc a = 0 . 078 fm , m π = 393 MeV , L = 2 . 5 fm , m π L = 5 . 0, up-down contribution 1548 × 24 + 4996 × 48 gauge configurations × stochastic volume sources Marcus Petschlies (HISKP) HVP @ ETMC g − 2 Initiative 9 / 26

  10. twisted mass + clover at N f = 2 and physical pion mass � D W [ U ] + m q + i µ l γ 5 τ 3 + i � � S l = χ l ¯ 4 c sw σ µν F µν [ U ] χ l ( x ) (4) x 400 L/a = 24 clover term not added for O ( a ) L/a = 32 L/a = 48 improvement 300 but to reduce the effects of isospin splitting M π 0 [MeV] 200 pion masses range from 130 to 350 MeV 100 2 volumes at m PS = 130 MeV , 4 . 4 fm and 5 . 8 fm 0 (single) lattice spacing 0 100 200 300 400 a = 0 . 0914 (3) (15) fm M π ± [MeV] pion mass splitting compatible with zero ⇒ reduced finite size effects ⇒ reduces isospin splitting effects Marcus Petschlies (HISKP) HVP @ ETMC g − 2 Initiative 10 / 26

  11. twisted mass + clover at N f = 2 and physical pion mass, L = 4 . 4 fm e [10 − 12 ] 1.6 1.4 1.2 a ud µ [10 − 8 ] 5.8 5.4 a ud 5.0 τ [10 − 6 ] 2.7 a ud 2.3 0 0.05 0.1 0.15 0.2 0.25 M 2 GeV 2 � � π physical point extr. N f = 2 extr. N f = 2 + 1 + 1 · 10 12 a hvp 1 . 45(11) 1 . 51(04) 1 . 50(03) e a hvp · 10 8 5 . 52(39) 5 . 72(16) 5 . 67(11) µ a hvp · 10 6 2 . 65(07) 2 . 65(02) 2 . 66(02) τ [Abdel-Rehim et al., 2015] Marcus Petschlies (HISKP) HVP @ ETMC g − 2 Initiative 11 / 26

  12. Restart 2017 focus on tmLQCD+clover at N f = 2 and physical pion mass 1 lattice spacing ( a = 0 . 091 fm ), but 2 volumes (4 . 4 fm and 5 . 8 fm ) twisted mass + clover N f = 2 + 1 + 1 at physical pion mass in production more measurements and statistics Π µν ( x , y ) = � J µ ( x ) J ν ( y ) � point-to-all , i.e. one ∼ few, fixed source locations y per gauge configuration ⇒ little of information content per gauge configuration actually used signal in disconnected contribution Marcus Petschlies (HISKP) HVP @ ETMC g − 2 Initiative 12 / 26

  13. Restart 2017 - extended list of observables HVP and π 0 , η, η ′ → γ γ ( η, η ′ on upcoming N f = 2 + 1 + 1 physical point gauge field ensemble) neutral pion decay on the lattice [Ji and Jung, 2001, Cohen et al., 2008, Shintani et al., 2009, Feng et al., 2011, Feng et al., 2012] dispersive approach to g − 2 HLbL [Colangelo et al., 2014b, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014] µνλσ = Π π 0 µνλσ + Π η ′ Π HLbL µνλσ + Π FsQED + Π η µνλσ + Π ππ µνλσ + . . . µνλσ γ γ dispersive approach F P → γγ ∗ + . . . π 0 , η, η ′ F P → γ ∗ γ ∗ γ ∗ γ ∗ γ ∗ γ ∗ γ ∗ γ ∗ µ µ µ µ recent calculation by Mainz group [Nyffeler, 2016, Antoine et al., 2016] Marcus Petschlies (HISKP) HVP @ ETMC g − 2 Initiative 13 / 26

  14. Restart 2017 - from point-to-all towards all-to-all use even-odd preconditioned exact low mode + stochastic high mode contributions to build correlators [Blum et al., 2016] quark propagator = inverse twisted mass Dirac matrix � M ee � − 1 � 1 � � � − M − 1 ee M eo C − 1 M − 1 M eo 0 D − 1 ee tm = = × C − 1 − γ 5 M oe M − 1 M oe M oo 0 γ 5 ee exact inverse M − 1 available ee computationally intensive part: inversion of C → C − 1 construct subspace from N ev eigenvectors to lowest-lying eigenvalues of CC † , CC † V = V Λ decomposition of odd sub-lattice with orthogonal projectors 1 = P V + P ⊥ V , P V = V V † inversion on P V becomes trivial inversion on P ⊥ V becomes cheap (exact deflation of lowest eigenmodes) � 1 � � 1 � � � − M − 1 ee M eo C − 1 M − 1 0 0 D − 1 ee tm = � ξ ξ † � C − 1 P V + P ⊥ − γ 5 M oe M − 1 0 0 γ 5 V E ee Marcus Petschlies (HISKP) HVP @ ETMC g − 2 Initiative 14 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend