the hadronic vacuum polarization contribution to g 2
play

The hadronic vacuum polarization contribution to ( g 2) : status - PowerPoint PPT Presentation

The hadronic vacuum polarization contribution to ( g 2) : status of the Mainz-CLS calculation Harvey Meyer g-2 workshop, Mainz, 20 June 2018 Cluster of Excellence Harvey Meyer HVP by Mainz-CLS Outline Calculation in the


  1. The hadronic vacuum polarization contribution to ( g − 2) µ : status of the Mainz-CLS calculation Harvey Meyer g-2 workshop, Mainz, 20 June 2018 Cluster of Excellence Harvey Meyer HVP by Mainz-CLS

  2. Outline ◮ Calculation in the time-momentum representation in N f = 2 + 1 QCD ◮ Technical improvements over our N f = 2 calculation [1705.01775 (JHEP)] . ◮ Results for the strange and charm connected contributions. ◮ Status of the light-quark contribution. CLS-Mainz HVP collaboration: A. G´ erardin, T. Harris, G. von Hippel, B. H¨ orz, HM, D. Mohler, K. Ottnad, H. Wittig. All numerical results in this talk are still preliminary! Harvey Meyer HVP by Mainz-CLS

  3. HVP: definitions (Euclidean space) ◮ primary object on the lattice: G µν ( x ) = � j µ ( x ) j ν (0) � . ◮ polarization tensor: � � Q µ Q ν − δ µν Q 2 � d 4 x e iQ · x G µν ( x ) = Π( Q 2 ) . Π µν ( Q ) ≡ � ∞ ◮ dQ 2 K ( Q 2 ; m 2 a hvp = 4 α 2 µ ) [Π( Q 2 ) − Π(0)] µ 0 12 π 2 , R ( s ) ≡ σ ( e + e − → hadrons) ◮ Spectral representation: ρ ( s ) = R ( s ) , 4 πα ( s ) 2 / (3 s ) � ∞ ρ ( s ) Π( Q 2 ) − Π(0) = Q 2 ds s ( s + Q 2 ) . 4 m 2 π Lautrup, Peterman & de Rafael Phys.Rept 3 (1972) 193; Blum hep-lat/0212018 (PRL) Harvey Meyer HVP by Mainz-CLS

  4. The time-momentum representation (TMR) ◮ mixed-representation Euclidean correlator: (natural on the lattice) � 3 � G TMR ( x 0 ) = − 1 d 3 x G kk ( x ) , 3 k =1 ◮ the spectral representation: � ∞ dω ω 2 ρ ( ω 2 ) e − ω | x 0 | , G TMR ( x 0 ) = x 0 � = 0 . 0 ◮ Finally, the quantity a hvp is given by µ � 2 � ∞ � α a hvp dx 0 G ( x 0 ) ˜ = f ( x 0 ) , µ π 0 � 2 π 2 − 2 + 8 γ E + 4 0 − 8 ˜ x 2 f ( x 0 ) = + ˆ x 0 K 1 (2ˆ x 0 ) x 2 m 2 ˆ ˆ µ 0 � � � 3 x 0 ) + G 2 , 1 x 2 +8 log(ˆ ˆ 0 | 2 1 , 3 0 , 1 , 1 2 x 0 = m µ x 0 , γ E = 0 . 577216 .. and G m,n where ˆ is Meijer’s function. p,q Bernecker & Meyer 1107.4388; Mainz-CLS 1705.01775. Harvey Meyer HVP by Mainz-CLS

  5. Expected integrand for a hvp (using pheno. R ) µ 0.5 0.4 � � t � 0.3 10 3 � t 3 G � t � K 0.2 0.1 41% 45% 11% 3% 0.0 0 1 2 3 4 5 6 t � fm � Bernecker & Meyer 1107.4388 Harvey Meyer HVP by Mainz-CLS

  6. Finite-size effects: discrete states on the torus 12 10 8 R 1 ( ω 2 ) 6 4 2 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ω [GeV] � � 3 / 2 | F π ( s ) | 2 + other channels 1 1 − 4 m 2 Isovector final states: ρ ( s ) = π /s 48 π 2 � � � �� � � � � 3 πs 2 � � � � | F π ( s ) | 2 = qφ ′ ( q )+ k ∂δ 1 ( k ) � � d x j z ( x ) � � ππ � 0 . � L � � ∂k 2 k 5 L 3 HM 1105.1892 (PRL); figure: model for F π ( s ) . Harvey Meyer HVP by Mainz-CLS

  7. Landscape of CLS ensembles 450 N300 N202 (H200) H101 B450 400 S400 H102 N302 N203 350 m π [MeV] 300 N200 N401 N101 (H105) J303 250 C101 D200 200 E250 150 100 0 0 . 050 2 0 . 065 2 0 . 077 2 0 . 085 2 a 2 [fm] N f = 2 + 1 ensembles, O( a ) improved Wilson quarks, treelevel-improved L¨ uscher-Weisz gauge action. Algorithm uses twisted-mass reweighting. Exact isospin symmetry on the reweighted configurations. I will often illustrate our calculations using ensemble D200. Harvey Meyer HVP by Mainz-CLS

  8. A first look at the three connected integrands on ensemble D200 G ( x 0 ) � K ( x 0 ) /m µ 0 . 016 Light Strange (x6) Charm (x6) 0 . 012 0 . 008 0 . 004 0 0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 x 0 [fm] Harvey Meyer HVP by Mainz-CLS

  9. Technical aspects of the calculation ◮ scale setting: we use the lattice spacing values from [1608.08900 (PRD) Bruno, Korzec, Schaefer] . For instance, a [fm] = 0 . 06440(65)(15) for D200: 1% precision. Dimensionful quantity used for scale-setting: f K + 1 2 f π . ◮ new: non-perturbative on-shell improvement of the vector current: calculation of c V [G´ erardin, Harris et al., in prep.] . ⇒ a hvp approaches its continuum value with O( a 2 ) corrections. µ ◮ local current ¯ ψ ( x ) γ µ ψ ( x ) as well as lattice Noether current ⇒ use two discretizations of the current-current correlator (ll,lc). Perform constrained simultaneous continuum limit for a hvp . µ ◮ We benefit from a dedicated lattice calculation of the I = ℓ = 1 scattering phase and of the pion form factor at timelike q 2 : [H¨ orz et al. 1511.02351 and in prep.] . Used to control tail of isovector correlation function and for the finite-size correction. Harvey Meyer HVP by Mainz-CLS

  10. Charm contribution Harvey Meyer HVP by Mainz-CLS

  11. Tuning of κ c , the bare charm mass parameter Tuning of κ c : by imposing m eff s = m exp D s = 1972 MeV on each lattice ensemble. c ¯ N200 4 . 15 × 10 6 4 . 1 × 10 6 4 . 05 × 10 6 4 × 10 6 D s m 2 3 . 95 × 10 6 3 . 9 × 10 6 3 . 85 × 10 6 7 . 81 7 . 82 7 . 83 7 . 84 7 . 85 7 . 86 1 /κ c ◮ Interpolation : m 2 D s vs 1 /κ c → linear behaviour ◮ am D s = 0 . 86 at β = 3 . 40 : discretization effects are expected to be large. Harvey Meyer HVP by Mainz-CLS

  12. y = m 2 π / (16 π 2 f 2 Chiral & continuum extrapolation of a c ( � π ) ) µ a HVP , LO × 10 − 10 µ,c 30 25 20 15 10 β = 3 . 40 β = 3 . 46 5 β = 3 . 55 β = 3 . 70 0 0 0 . 02 0 . 04 0 . 06 0 . 08 0 . 1 0 . 12 y � 10 10 · a c µ = 14 . 95(47) stat (11) χ ◮ The O ( a ) − improvement reduces lattice artefacts significantly ◮ The simultaneous continuum extrapolation (linear in a 2 ) works well. Harvey Meyer HVP by Mainz-CLS

  13. Strange contribution Harvey Meyer HVP by Mainz-CLS

  14. Strange contribution: data at physical quark masses (E250) G ( x 0 ) � K ( x 0 ) /m µ loc-loc 0 . 002 cons-loc 0 . 0015 0 . 001 0 . 0005 0 0 0 . 5 1 1 . 5 2 2 . 5 3 x 0 [fm] ◮ With full O ( a ) − improvement of the vector currents ◮ Two discretizations almost coincide: remaining discretization errors small. Harvey Meyer HVP by Mainz-CLS

  15. Finite size effects on strangeness correlator at m π = 280 MeV G ( x 0 ) � K ( x 0 ) /m µ 0 . 002 L = 2 . 05 fm L = 2 . 70 fm 0 . 0015 L = 4 . 10 fm ⇒ At the level of 0 . 5 % precision, volume effects are 0 . 001 negligible for L ≥ 2 . 7 fm. 0 . 0005 0 0 0 . 5 1 1 . 5 2 2 . 5 3 x 0 [fm] a ll − imp a lc − imp CLS µ µ U101 ( L = 2 . 05 fm) 69.5(0.6) 65.8(0.6) H105 ( L = 2 . 70 fm) 71.8(0.4) 68.0(0.4) N101 ( L = 4 . 10 fm) 71.9(0.3) 68.0(0.3) Harvey Meyer HVP by Mainz-CLS

  16. y = m 2 π / (16 π 2 f 2 Chiral & continuum extrapolation ( � π ) ) ◮ Fit : a µ ( a, � y, d ) = y exp ) + δ d a 2 + γ 1 ( � a µ (0 , � y − � y exp ) + γ 2 ( � y log � y − � y exp log � y exp ) a HVP , LO × 10 − 10 µ,s 100 90 80 70 60 50 40 β = 3 . 40 β = 3 . 46 30 β = 3 . 55 β = 3 . 70 20 0 0 . 02 0 . 04 0 . 06 0 . 08 0 . 1 0 . 12 y � a HVP , LO = 53 . 6(2 . 5) stat (0 . 8) χ µ,s ◮ The first error is the statistical error; ◮ second error : variation wrt setting the cut at m π = 360 MeV; ◮ statistical error dominated by the scale setting error. Harvey Meyer HVP by Mainz-CLS

  17. Light-quark contributions Harvey Meyer HVP by Mainz-CLS

  18. Auxiliary calculation: time-like pion form factor For all the ensembles with m π < 300 MeV: dedicated study (except for E250) ◮ Overlap and energy levels to constrain the tail of the correlation function ◮ Time-like pion form factor to estimate finite-size effects. On N200 ( m π = 280 MeV): parametrizing the time-like pion form factor in the Gounaris-Sakurai form: m GS Γ GS = 776(4) MeV = 59(2) MeV. ρ ρ Other parametrizations are being investigated. [Bulava, H¨ orz et al., 1511.02351 (LAT2015).] Harvey Meyer HVP by Mainz-CLS

  19. Saturation of the correlator by the low-lying states (D200) G ( x 0 ) � K ( x 0 ) /m µ 0 . 016 1 exp fit cf. slide 6: loc-cons n=4 12 n=3 0 . 012 n=2 10 n=1 8 x cut R 1 ( ω 2 ) 0 6 0 . 008 4 2 0 . 004 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ω [GeV] 0 0 0 . 5 1 1 . 5 2 2 . 5 3 x 0 [fm] ∞ � A n e − E n x 0 G ( x 0 ) = n =1 ◮ Excellent cross-check that the tail is understood. [Update from H. Wittig et al. 1710.10072 (LAT2017)] Harvey Meyer HVP by Mainz-CLS

  20. Saturation of the correlator by the low-lying states (D200) G ( x 0 ) � K ( x 0 ) /m µ 0 . 004 x cut 1 exp fit 0 cf. slide 6: loc-cons n=4 12 0 . 003 xn=3 yn=2 10 zn=1 8 R 1 ( ω 2 ) 0 . 002 6 4 2 0 . 001 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ω [GeV] 0 2 2 . 2 2 . 4 2 . 6 2 . 8 3 3 . 2 x 0 [fm] ∞ � A n e − E n x 0 G ( x 0 ) = n =1 ◮ Excellent cross-check that the tail is understood. [Update from H. Wittig et al. 1710.10072 (LAT2017)] Harvey Meyer HVP by Mainz-CLS

  21. Finite size effects: check on the lattice ( m π = 280 MeV H105 vs. N101 ) G ( x 0 ) � K ( x 0 ) /m µ 0 . 013 0 . 012 0 . 011 0 . 01 0 . 009 0 . 008 0 . 007 L/a = 32 ( L = 2 . 70 fm) 0 . 006 L/a = 48 ( L = 4 . 10 fm) L/a = 32 with FSE 0 . 005 L/a = 48 with FSE 0 . 004 0 . 6 0 . 8 1 1 . 2 1 . 4 1 . 6 1 . 8 2 x 0 [fm] ◮ FSE consistent with the estimate using the pion FF and L¨ uscher formalism (see [1705.01775 Mainz-CLS]) . Harvey Meyer HVP by Mainz-CLS

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend