hadronic matter to quark matter
play

hadronic matter to quark matter Shock Induced Conversion Diffusion - PowerPoint PPT Presentation

Hydrodynamical study on the conversion of hadronic matter to quark matter Shock Induced Conversion Diffusion Induced Conversion Phys. Rev. D 93, 043018 (2016) Phys. Rev. D 93, 043019 (2016) Shun Furusawa (National Astrophysical Observatory of


  1. Hydrodynamical study on the conversion of hadronic matter to quark matter Shock Induced Conversion Diffusion Induced Conversion Phys. Rev. D 93, 043018 (2016) Phys. Rev. D 93, 043019 (2016) Shun Furusawa (National Astrophysical Observatory of Japan ⇒ FIAS ) collaborator : Shoichi Yamada (Waseda University) The other work: Core Collapse Supernovae (5/30 FIGSS seminar) 05/10 2016 Astro Coffee

  2. In Introduction: Quark Stars Strange quark Stars Neutron Stars Hybrid stars Pure quark stars HM 3QM 3QM HM : neutrons, protons QM :deconfined quarks (confined quarks) (up, down, strange) d 3 quarks are confined d p=uud u d n=udd u s ・ Mass Radius Relations ・ different cooling curves ・ Quark Nova ( 𝟐𝟏 𝟔𝟒 erg neutrinos are emitted)

  3. Co Combu bustio ion to to S SQM Energy 2QM Gibbs Energy d HM HM A 2QM d u d SQM u d d SQM B u s Fuel ash C,O ⇒ Ni 𝟔𝟕 (Type Ia SNe ) C+ O2 ⇒ CO2 ( Terrestrial combustion ) P Transition point A Shock induced Case H M ⇒ 2QM ⇒ SQM B Diffusion induced Case HM ⇒ SQM with small strangeness ⇒ SQM

  4. HM 2QM d d u d u d SQM A. Shock induced Case d ・ Spin Down of (P)NS u s ・ Accretion on (P)NS ・ Merger of compact stars Fuel ash HM SQM with minimum strangeness d u d d d B. Diffusion induced Case s ・ Following Shock induced ・ Capture of strangelets SQM u d d d d s u u u u s d Fuel ash

  5. Shock induced Case HM 2QM d d u d u d SQM SQM d HM HM u s Fuel ash HM 2QM SQM Surface Center

  6. HM Diffusion induced Case SQM with minimum strangeness d u d d d s SQM u SQM d d d d HM s u u u HM u s d Fuel ash HM SQM SQM with minimum strangeness Surface Center

  7. Combustion modes P 1 Hugoniot P 1 a curve a Endothermic Exothermic (Our works) (terrestrial case) (Previous works) d b c Initial state P 0 d P 0 f f c e 1/ρ 0 1/ρ 1 1/ρ 1 1/ρ 0 u  u  c c 0 s 0 0 s 0 u  c u  a: strong detonation d: weak deflagration c 1 s 1 1 s 1 u  c c: weak detonation u  1 s 1 c f: strong deflagration 1 s 1 u  c b,e: Jouget point 1 s 1

  8. Previous works (Olint nt ’87, Benvenuto’89 Mishu hustin stin ’14, Drago ’15) ・ St Structu tures res inside de the front t are not solved ed. d p+n ? u Initial State Final state ( HM ) (3 QM ) s ・ Endoth therm rmic case is neglec ecte ted in referen rence ce to terrest stria rial l combus ustio tion Herzog ‘11 Pagliara ‘13 endo. exo.

  9. Previ Pr vious works ・ St Structu tures res inside de the front t are not solved ed. ・ Endoth thermi rmic case is neglec ecte ted due to a strain ined ed interpret retat ation on. . f Our works: Motivation o of 1 , What happens inside combustion front when QS is formed? 2, Which combustion modes are realized for the two scenarios. 3, List up all possibl ible e structu tures res inside de the front t for wide ranges es of parame meter er s in EOS S of QM and initia ial l conditi tion on. p+n d Initial State Final state ( HM ) (3 QM ) s u 0 x Strong interaction Time Scale weak interaction

  10. QM EOS (Farhi et al. 84, Fischer et al. 10) MIT Bag Model Larger Bag constant ⇒ softer Larger Strong Coupling Constant α ⇒ stiffer

  11. Parameters in QM EOS ↑ 𝑵 𝒏𝒃𝒚 < 2 𝑵 𝒕𝒗𝒐 → NS matter (𝝇 𝟏 ) critical 𝑪 𝟐/𝟓 MeV ↑ Endothermic (Shen & 𝝇 𝟏 ) 2QM@P=0 < 934MeV → PNS matter (𝝇 𝟏 ) clitical (HM) ← α = 𝜌 2 (1 − 𝑏)

  12. Model Shock Induced case  eq df f f  eq  df f f s s s u  s s s u   dx • 1D Steady flow dx Const. ・ Conservation Eq. of Const. Hydrodynamics with viscos terms Const. • β equilibration ( 𝝊 = 𝟐𝟏 −𝟗 s ) ・ PNS H M ・QM (T.Fischer 10) (Shen EOS ’11) 𝑍 𝑚𝑓𝑞 = 0.3 Bag Model ( B:Bagconstant )+     14 3 T 10 MeV 3 10 g / cm Strong interaction(α: coupling c.) i i ・ Mixed Phase in the front ・ Volume Fraction of QM and HM QM: HM= r : ( 1-r ) ・ Global Charge Neutrality

  13. d u Complete- n Deconfinement Case De ase e p s 𝑪 𝟐/𝟓 = 𝟐𝟓𝟏 MeV 𝝃 𝜷 𝒕 = 𝟏. 𝟓 𝑵 𝒋 = 𝟒. 𝟏 ① shock compression Mixed phase ⇒ HM(x<6) ② deconfinement starts @x~6 HM& 2QM P ③ deconfinement n b finishes @x~9 2QM T T[MeV] ④ 3QM toward β eq. (9<x<20) 3QM X (typical length of weak interaction)

  14. In Incomplete- n p Deconfinement Case De ase 𝑪 𝟐/𝟓 = 𝟐𝟓𝟏 MeV e d 𝜷 𝒕 = 𝟏. 𝟕 𝑵 𝒋 = 𝟒. 𝟏 ν u ① shock compression s HM(x<7.5) ② deconfinement starts @x~7.5 HM& 2QM ③ shock compression stop and s quarks P appear @ ( x~12 ) n b ③ deconfinement finishes T @x~12 3QM ④ 3QM toward β eq. (18<x<30) 3QM

  15. 2, Model diffusion induced case  eq df f f  s s s u  • 1D Steady flow ( local analysis ) dx Const. • Conservation Eq. of Hydrodynamics Const. • Diffusion Equation of Strange quarks Const. ・ PNS H M ・QM (T.Fischer 10) (Shen EOS ’11) 𝑍 𝑚𝑓𝑞 = 0.3 Bag Model ( B:Bagconstant )+ 0     14 3 T 10 MeV 3 10 g / cm Strong interaction(α: coupling c.) 0 ・ Mixed Phase in the front ・ Volume Fraction of QM and HM QM: HM= r : ( 1-r ) ・ Global Charge Neutrality

  16. Result lt ( 𝑪 𝟐/𝟓 = 𝟐𝟓𝟏 MeV 𝜷 𝒕 = 𝟏. 𝟓 ) x =0 start of deconfinemet x~0.5 end of deconfinement x>0.5 equilibration to 3QM d p n 𝑣 𝑗 = 2.3 ∗ 10 4 cm/s u e s 𝝃 X (typical length of weak decay)

  17. Result lt :E :Evolu lution of of component in in th the fr front ( 𝑪 𝟐/𝟓 = 𝟐𝟓𝟏 MeV 𝜷 𝒕 = 𝟏. 𝟓 ) Endothermic Exothermic 𝑪 𝟐/𝟓 = 𝟐𝟓𝟏 MeV 𝜷 𝒕 = 𝟏. 𝟓 𝑪 𝟐/𝟓 = 𝟐𝟑𝟔 MeV 𝜷 𝒕 = 𝟏. 𝟗 Normalized Pressure final initial final Normalized Volume Both cases show weak deflagrations

  18. STABILITY OF THE COMBUSTION FRONT 𝜷 = 𝝇ash/𝝇fuel <1 exothermic 𝝇fuel >1 endothermic g 𝝇ash combustion front x gravity surface effect α<1 exothermic ⇒ ω real part>0 (σ=0) ⇒ unstable (previous works) α >1 endothermic ⇒ ω real part<0 (any σ) ⇒ stable ( our work ) 3D simulation in Exothermic regime (Pagliara ’13) ⇒ spherical propagation in endothermic?

  19. Summary We have cleared the structure of combustion front. ● The type of combustion ・ diffusion induced case: weak deflagration ・ shock induced case: strong detonation ● Even in Endothermic Case, Combustion can take place !! ・ Conversion front of deflagration is stable in Endothermic Case ● There are some conversion patterns ・ Complete- or Incomplete- deconfinement Future Works ・ dependence of Surface tension, EoS of HM ( underway ) ・ Conversion from Hyperonic to 3QM and 3QM to HM ・ Dynamical Simulation from NS to QS.

  20. EOS dependence Stiff medium 転位点 Soft Deconfinement Starts Initial

  21. Dif iffusion Constant Dependence T u 𝒗 𝒋 ∝ 𝑬 ∝ 𝝂/𝑼 Front velocities are highly dependent on T & ρ

  22. EOS dependence soft fs0=0.1 fs0=0.2 stiff 𝒗 𝒋 ~𝟓. 𝟒 × 𝟐𝟏 𝟓 cm/s for fs=0.1 𝒗 𝒋 ~𝟐𝟐. 𝟕 × 𝟐𝟏 𝟓 cm/s for fs=0.2 .Combustion velocity depends on Fraction of Strangeness at x=0.

  23. Relativistic scheme 𝑪 𝟐/𝟓 = 𝟐𝟓𝟏 MeV , 𝜷 𝒕 = 𝟏. 𝟕 𝐛𝐨𝐞 𝑵 𝒋 = 𝟑. 𝟔 Non- rela Rela

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend