hadronic light by light contribution to the muon
play

Hadronic light-by-light contribution to the muon anomalous magnetic - PowerPoint PPT Presentation

Hadronic light-by-light contribution to the muon anomalous magnetic moment from lattice QCD Tom Blum(UCONN/RBRC), Norman Christ (Columbia), Masashi Hayakawa (Nagoya), Taku Izubuchi (BNL/RBRC), Luchang Jin (UConn/RBRC), Chulwoo Jung (BNL),


  1. Hadronic light-by-light contribution to the muon anomalous magnetic moment from lattice QCD Tom Blum(UCONN/RBRC), Norman Christ (Columbia), Masashi Hayakawa (Nagoya), Taku Izubuchi (BNL/RBRC), Luchang Jin (UConn/RBRC), Chulwoo Jung (BNL), Christoph Lehner (BNL), (RBC and UKQCD Collaborations) Mainz Institute of Theoretical Physics June 18, 2018 1 / 31

  2. Outline I 1 Hadronic light-by-light (HLbL) scattering contribution 2 Summary 3 References 2 / 31

  3. Point source method in QCD+pQED (L. Jin) [Blum et al., 2016] The desired amplitude + + · · · is obtained from a Euclidean space lattice calculation e � i ~ q e E q / 2 ( t snk � t src ) X 2 · ( ~ x snk + ~ x src ) e i ~ q · ~ x op M ⌫ ( x snk , x op , x src ) , M ⌫ ( ~ q ) = lim t src !�1 x snk , ~ ~ x src t snk !1 where ⌦ ↵ � e M ⌫ ( x src , x op , x snk ) = µ ( x snk ) J ⌫ ( x op ) µ ( x src ) X X F ⌫ ( x , y , z , x 0 , y 0 , z 0 , x op , x snk , x src ) . = � e x , y , z x 0 , y 0 , z 0 and q + + m µ q � + m µ ⇣ � i / F 1 ( q 2 ) � ⌫ + i F 2 ( q 2 ) ⌘⇣ � i / ⌘� ⌘⇣ ⇣ ⌘ [ � ⌫ , � ⇢ ] q ⇢ = M ⌫ ( ~ q ) ↵� , 2 E q / 2 4 m 2 E q / 2 ↵� 3 / 31

  4. Point source method in QCD+pQED (L. Jin) [Blum et al., 2016] x op , ν y, σ x, ρ z, κ x src x snk y � , σ � z � , κ � x � , ρ � F C q ; x , y , z , x op ) = ( � ie ) 6 G ⇢ , � ,  ( ~ q ; x , y , z ) H C ⌫ ( ~ ⇢ , � ,  , ⌫ ( x , y , z , x op ) i 4 H C ⇢ , � ,  , ⌫ ( x , y , z , x op ) ( e q / e ) 4 X = ⌦ tr ⇥ � i � ⇢ S q ( x , z ) i �  S q ( z , y ) i � � S q ( y , x op ) i � ⌫ S q ( x op , x ) ⇤↵ QCD + 5 permutations 6 q = u , d , s i 3 G ⇢ , � ,  ( ~ q ; x , y , z ) p m 2 + ~ q 2 / 4( t snk � t src ) X = G ⇢ , ⇢ 0 ( x , x 0 ) G � , � 0 ( y , y 0 ) G  ,  0 ( z , z 0 ) e x 0 , y 0 , z 0 X e � i ~ q / 2 · ( ~ x snk + ~ x src ) S � x snk , x 0 � i � ⇢ 0 S ( x 0 , z 0 ) i �  0 S ( z 0 , y 0 ) i � � 0 S � y 0 , x src � ⇥ + 5 permutations ~ x snk , ~ x src 4 / 31

  5. Point source method in QCD+pQED (L. Jin) [Blum et al., 2016] Do all sums in the QED part exactly (using FFT’s), QCD part done stochastically Key idea: contribution exponentially suppressed with r = | x � y | , so importance sample, concentrate on r < ⇠ � compton ⇡ space-time translational invariance allows coordinates relative to the hadronic loop 8 9 ✓ q , r 2 , � r ◆ < = X X e i ~ q · ~ x op M ⌫ ( ~ q ) = F ⌫ ~ 2 , z , x op r : z , x op ; where r = x � y , z ! z � w , x op ! x op � w and w = ( x + y ) / 2 We sum all the internal points over the entire space-time except we fix x + y = 0. ( x , y ) pairs stochastically sampled, z and x op sums exact 5 / 31

  6. Point source method in QCD+pQED (L. Jin) [Blum et al., 2016] F 1 ( q 2 ) � ⌫ + i F 2 ( q 2 ) ✓ ◆ p 0 ) | J ⌫ (0) | µ ( ~ p 0 ) h µ ( ~ p ) i = � e ¯ u ( ~ [ � ⌫ , � ⇢ ] q ⇢ u ( ~ p ) 4 m implies F 2 (0) only accessible by extrapolation q ! 0. Form is due to Ward Identity, or charge conservation need WI to be exact on each config, or error blows up as ~ q ! 0 To enforce WI compute average of diagrams with all possible insertions of J ⌫ ( x op ) x op , ν y, σ x, ρ y, σ x, ρ y, σ x, ρ z, κ z, κ z, κ x op , ν x op , ν x src y � , σ � x � , ρ � x snk x src y � , σ � x � , ρ � x snk x src y � , σ � x � , ρ � x snk z � , κ � z � , κ � z � , κ � 6 / 31

  7. Point source method in QCD+pQED (L. Jin) [Blum et al., 2016] x op , ν y, σ x, ρ y, σ x, ρ y, σ x, ρ z, κ z, κ z, κ x op , ν x op , ν x src y � , σ � x � , ρ � x snk x src y � , σ � x � , ρ � x snk x src y � , σ � x � , ρ � x snk z � , κ � z � , κ � z � , κ � WI allows a moment method that projects directly to q = 0 q , r 2 , � r ⇣ ⌘� x op � 1 X F C e i ~ q · ~ � M ⌫ ( ~ q ) = 2 , z , x op ~ ⌫ r , z , x op q , r 2 , � r ⇣ ⌘ X F C ⇡ ~ 2 , z , x op ( i ~ q · ~ x op ) ⌫ r , z , x op @ ⇣ ⌘ X F C M ⌫ ( ~ q ) | ~ = q = 0 , r , � r , z , x op ( x op ) i i ~ q =0 ⌫ @ q i r , z , x op 7 / 31

  8. Point source method in QCD+pQED (L. Jin) [Blum et al., 2016] q ) between positive energy Dirac spinors u ( ~ u ( ~ Sandwich M ⌫ ( ~ 0 , s ), ¯ 0 , s ) ✓ F 2 ( q 2 = 0) i ◆ 0 , s 0 ) @ u ( ~ 0 , s 0 ) u ( ~ 0 , s ) = u ( ~ 0 u ( ~ 2[ � i , � j ] M i ( ~ q ) | ~ 0 , s ) q = ~ 2 m µ @ q j multiply both sides by 1 2 ✏ ijk , sum over i and j , 2 3 ~ F 2 (0) 1 0; x = � r 2 , y = + r Σ F C ⇣ ⌘ u s 0 ( ~ 2 u s ( ~ X 4X u s 0 ( ~ 0) i ~ ~ u s ( ~ ¯ 0) 0) = x op ⇥ ¯ 2 , z , x op 0) 2 ~ 5 m r z , x op where Σ i = 1 4 i ✏ ijk [ � j , � k ]. 8 / 31

  9. Lattice setup Photons: Feynman gauge, QED L [Hayakawa and Uno, 2008] (omit all modes with ~ q = 0) Gluons: Iwasaki (I) gauge action (RG improved, plaquette+rectangle) muons: L s = 1 free domain-wall fermions (DWF) quarks: M¨ obius-DWF 2+1f M¨ obius-DWF, I and I-DSDR physical point QCD ensembles (RBC/UKQCD) [Blum et al., 2014] 48I 64I 24D 32D 32D fine 48D a � 1 (GeV) 1.73 2.36 1.0 1.0 1.38 1.0 a (fm) 0.114 0.084 0.2 0.2 0.14 0.2 L (fm) 5.47 5.38 4.8 6.4 4.6 9.6 48 64 24 24 24 24 L s m ⇡ (MeV) 139 135 140 140 140 140 m µ (MeV) 106 106 106 106 106 106 meas (con,disco) 65,65 43,44 33,32 42,20 8,7 62,0 9 / 31

  10. Continuum and 1 volume limits in QED [Blum et al., 2016] Test method in pure QED QED systematics large, O ( a 4 ), O (1 / L 2 ), but under control 0.4 0.35 0.35 0.3 0.3 0.25 F 2 (0) / ( α / π ) 3 F 2 (0) / ( α / π ) 3 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0 0.5 1 1.5 2 2.5 3 3.5 4 a 2 (GeV − 2 ) 1 / ( m µ L ) 2 Limits quite consistent with well known PT result 10 / 31

  11. Physical point cHLbL contribution, 48 3 , 1.73 GeV lattice [Blum et al., 2017a] Measurements on 65 configurations, separated by 20 trajectories ignore strange quark contribution (down by 1/17 plus mass suppressed) exponentially suppressed with distance most of contribution by about 1 fm 0.03 0.12 48I 0.025 0.1 F 2 (0) / ( α / π ) 3 0.02 0.08 0.015 F 2 (0) / ( α / π ) 3 0.01 0.06 0.005 0.04 0 0.02 -0.005 0 5 10 15 20 0 0 5 10 15 20 25 | r | ceiling distance in lattice unit = 11 . 60 ± 0 . 96 ⇥ 10 � 10 a cHLbL µ 11 / 31

  12. Disconnected contributions SU(3) flavor: x op , ν x op , ν x op , ν z, κ z, κ z, κ y, σ y, σ x, ρ y, σ x, ρ x, ρ x src x snk x src z ′ , κ ′ x ′ , ρ ′ x snk y ′ , σ ′ x ′ , ρ ′ z ′ , κ ′ x src y ′ , σ ′ x ′ , ρ ′ x snk y ′ , σ ′ z ′ , κ ′ Leading O ( m s � m u , d ) x op , ν x op , ν x op , ν z, κ z, κ y, σ x, ρ y, σ x, ρ z, κ y, σ x, ρ x src x snk x src z ′ , κ ′ x ′ , ρ ′ x snk y ′ , σ ′ x ′ , ρ ′ z ′ , κ ′ y ′ , σ ′ x src z ′ , κ ′ x ′ , ρ ′ x snk y ′ , σ ′ O ( m s � m u , d ) 2 and higher Gluons within and connecting quark loops have not been drawn To ensure loops are connected by gluons, explicit “vacuum” subtraction is required 12 / 31

  13. Leading disconnected contribution x op , ν z, κ y, σ x, ρ x src x snk z ′ , κ ′ x ′ , ρ ′ y ′ , σ ′ We use two point sources at y and z , chosen randomly. The points sinks x op and x are summed over exactly on lattice. Only point source quark propagators are needed. We compute M point source propagators and all M 2 combinations are used to perform the stochastic sum over r = z � y ( M 2 trick). F D ( � ie ) 6 G ⇢ , � ,  ( x , y , z ) H D ⌫ ( x , y , z , x op ) = ⇢ , � ,  , ⌫ ( x , y , z , x op ) ⌧ 1 ⇤� H D Π ⇢ , � ( x , y ) � Π avg ⇢ , � ,  , ⌫ ( x , y , z , x op ) = 2 Π ⌫ ,  ( x op , z ) ⇥ ⇢ , � ( x � y ) QCD ( e q / e ) 2 Tr[ � ⇢ S q ( x , y ) � � S q ( y , x )] . X Π ⇢ , � ( x , y ) = � q 13 / 31

  14. Leading disconnected contribution x op , ν z, κ y, σ x, ρ x src x snk z ′ , κ ′ y ′ , σ ′ x ′ , ρ ′ F dHLbL (0) ( � s 0 , s ) i 1 2 X X u s 0 ( ~ 0) F D k ( x , y = r , z = 0 , x op ) u s ( ~ = 2 ✏ i , j , k ( x op ) j · i ¯ 0) 2 m r , x x op ⌧ 1 ⇤� H D Π ⇢ , � ( x , y ) � Π avg ⇥ ⇢ , � ,  , ⌫ ( x , y , z , x op ) = 2 Π ⌫ ,  ( x op , z ) ⇢ , � ( x � y ) QCD 1 1 X X 2 ✏ i , j , k ( x op ) j h Π ⇢ , � ( x op , 0) i QCD = 2 ✏ i , j , k ( � x op ) j h Π ⇢ , � ( � x op , 0) i QCD = 0 x op x op Because of parity, the expectation value for the (moment of) left loop averages to zero. Π ⇢ , � ( x , y ) � Π avg is only a noise reduction technique. Π avg ⇥ ⇤ ⇢ , � ( x � y ) ⇢ , � ( x � y ) should remain constant through out the entire calculation. 14 / 31

  15. Physical point dHLbL contribution [Blum et al., 2017a] Use AMA with 2000 low-modes of the Dirac operator and randomly choose 256 “spheres” of radius 6 lattice units Uniformly sample 4 (unique) points in each do half as many strange quark props Construct (1024 + 512) 2 point-pairs per configuration 15 / 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend