h0k03a advanced process control
play

H0K03a : Advanced Process Control Model-based Predictive Control 1 : - PowerPoint PPT Presentation

H0K03a : Advanced Process Control Model-based Predictive Control 1 : Introduction Bert Pluymers Prof. Bart De Moor Katholieke Universiteit Leuven, Belgium Faculty of Engineering Sciences Department of Electrical Engineering (ESAT) Research Group


  1. H0K03a : Advanced Process Control Model-based Predictive Control 1 : Introduction Bert Pluymers Prof. Bart De Moor Katholieke Universiteit Leuven, Belgium Faculty of Engineering Sciences Department of Electrical Engineering (ESAT) Research Group SCD-SISTA H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  2. Overview • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation • MPC 1 : Introduction • MPC Basics • MPC 2 : Dynamic Optimization • MPC 3 : Stability • MPC 4 : Robustness • Industry Speaker : Christiaan Moons (IPCOS) (november 3 rd ) S ignal processing I dentification S ystem T heory 1 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  3. Overview • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation Lesson 1 : Introduction • MPC Basics • Motivating example • MPC Paradigm • History • Mathematical Formulation • MPC Basics S ignal processing I dentification S ystem T heory 2 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  4. Motivating Example • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation Consider a linear discrete-time state-space model • MPC Basics called a ‘ double integrator ’. We want to design a state feedback controller that stabilizes the system (i.e. steers it to x=[0; 0]) starting from x=[1; 0], without violating the imposed input constraints S ignal processing I dentification S ystem T heory 3 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  5. Motivating Example • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation Furthermore, we want the controller to lead to a • MPC Basics minimal control ‘cost’ defined as with state and input weighting matrices A straightforward candidate is the LQR controller, which has the form S ignal processing I dentification S ystem T heory 4 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  6. Motivating Example • Overview • Motivating Example • MPC Paradigm • History LQR controller • Mathematical Formulation • MPC Basics 1 0.5 x k,1 0 -0.5 0 50 100 150 200 250 300 k 10 0 u k -10 -20 -30 0 50 100 150 200 250 300 S ignal processing k I dentification S ystem T heory 5 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  7. Motivating Example • Overview • Motivating Example • MPC Paradigm • History LQR controller with clipped inputs • Mathematical Formulation 1 • MPC Basics 0.5 x k,1 0 -0.5 -1 0 50 100 150 200 250 300 k 0.15 0.1 0.05 u k 0 -0.05 -0.1 0 50 100 150 200 250 300 S ignal processing k I dentification S ystem T heory 6 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  8. Motivating Example • Overview • Motivating Example • MPC Paradigm • History LQR controller with R=100 • Mathematical Formulation 1 • MPC Basics 0.5 x k,1 0 -0.5 0 50 100 150 200 250 300 k 0.1 0.05 u k 0 -0.05 -0.1 0 50 100 150 200 250 300 S ignal processing I dentification k S ystem T heory 7 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  9. Motivating Example • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation waste gas • MPC Basics F T Cracking P Furnace Feed H condenser EDC L EDC / VC / HCl superheater evaporato T r P F Fuel gas Systematic way to deal with this issue… ? S ignal processing I dentification S ystem T heory 8 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  10. MPC Paradigm • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation • MPC Basics Process industry in ’70s : how to control a process ??? S ignal processing I dentification and… easy to understand (i.e. teach) and implement ! S ystem T heory 9 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  11. MPC Paradigm • Overview • Motivating Example • MPC Paradigm → Modelbased Predictive Control (MPC) • History • Mathematical Formulation • MPC Basics • Predictive : use model to optimize future input sequence S ignal processing • Feedback : incoming measurements used to compensate for I dentification inaccuracies in predictions and unmeasured disturbances S ystem T heory 10 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  12. MPC Paradigm • Overview • Motivating Example • MPC Paradigm MPC has earned its place in the control hierarchy… • History • Mathematical Formulation • MPC Basics • Econ. Opt. : optimize profits using market and plant information (~day) • MPC : steer process to desired trajectory (~minute) • PID : control flows, temp., press., … towards MPC setpoints (~second) S ignal processing I dentification S ystem T heory 11 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  13. History • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation Before 1960’s : • MPC Basics • only input/output models, i.e. transfer functions, FIR models • Controllers : • heuristic (e.g. on/off controllers) • PID, lead/lag compensators, … • mostly SISO • MIMO case : input/output pairing, then SISO control S ignal processing I dentification S ystem T heory 12 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  14. History • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation Early 1960’s : Rudolf Kalman • MPC Basics • Introduction of the State Space model : • notion of states as ‘internal memory’ of the system • states not always directly measurable : ‘Kalman’ Filter ! • afterwards LQR (as the dual of Kalman filtering) • LQG : LQR + Kalman filter • But LQG no real succes in industry : • constraints not taken into account • only for linear models • only quadratic cost objectives S ignal processing I dentification • no model uncertainties S ystem T heory 13 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  15. History • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation During 1960’s : ‘Receding Horizon’ concept • MPC Basics • Propoi, A. I. (1963). “ Use of linear programming methods for synthesizing sampled-data automatic systems ”. Automatic Remote Control, 24(7), 837 – 844 . • Lee, E. B., & Markus, L. (1967). “ Foundations of optimal control theory ” . New York: Wiley. : “… One technique for obtaining a feedback controller synthesis from knowledge of open-loop controllers is to measure the current control process state and then compute very rapidly for the open- loop control function. The first portion of this function is then used during a short time interval, after which a new measurement of the function is computed for this new measurement. The procedure is then repeated. …” S ignal processing I dentification S ystem T heory 14 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  16. History • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation During 1960’s : ‘Receding Horizon’ concept • MPC Basics S ignal processing I dentification S ystem T heory 15 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  17. History • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation 1970’s : 1 st generation MPC • MPC Basics • Extension of the LQR / LQG framework through combination with the ‘receding horizon’ concept • IDCOM (Richalet et al., 1976) : • IR models • quadratic objective • input / output constraints • heuristic solution strategy • DMC (Shell, 1973) : • SR models • quadratic objective • no constraints S ignal processing • solved as least-squares problem I dentification S ystem T heory 16 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend