H O W S E N S I T I V E A R E D I R E C T D E T E C T I O N E X P E R I M E N T S T O S T R O N G LY I N T E R A C T I N G D A R K M AT T E R ? T I M O N E M K E N ( C P ³ - O R I G I N S , O D E N S E ) Based on: [arXiv:1802.04764]* [arXiv:180?.????]** * In collaboration with Chris Kouvaris. ** In collaboration with Rouven Essig, Chris Kouvaris, and Mukul Sholapurkar. 01.06.2018 MASS2018: Origin of Mass at the High Energy and Intensity Frontier
• Constraints from direct detection are typically upper bounds on the cross section. • However, detectors lose sensitivity to strongly interacting dark matter due to scatterings in the overburden. Goodman and Witten, Phys.Rev. D31 (1985) 3059 Starkman et al, Phys.Rev. D41 (1990) 3594
• Constraints from direct detection are typically upper bounds on the cross section. • However, detectors lose sensitivity to strongly interacting dark matter due to scatterings in the overburden. Goodman and Witten, Phys.Rev. D31 (1985) 3059 Starkman et al, Phys.Rev. D41 (1990) 3594
O U T L I N E I. Terrestrial DM-nucleus scatterings II. When detectors lose sensitivity ‣ Analytic approach ‣ Monte Carlo simulations III. DM-electron scattering experiments
Part I T E R R E S T R I A L D M - N U C L E U S S C AT T E R I N G S
R E L E VA N C E O F E A R T H S C AT T E R I N G S F O R S U B - G E V D M D E T E C T I O N • Look e.g. at models with a heavy dark photon portal µ + ε F µ ν F 0 µ ν + m 2 X γ µ XA 0 µ A 0 µ L ⊃ g X ¯ φ A 0 ◆ 2 ✓ µ χ p σ χ p ' σ χ e µ χ e • Here tested DM-electron cross sections are accompanied by strong DM-nucleus interactions. S.K. Lee et al, PRD92 (2015) 083517 TE, C. Kouvaris, I. Shoemaker, PRD96 (2017) no.1, 015018
D A R K M AT T E R S C AT T E R I N G I N S I D E T H E E A R T H Probability to scatter after travelling a distance L: • � d x Z P ( L ) = 1 − exp − � MFP ( ~ v ) x, ~ The mean free path is given by • x ) ⇢ ⊕ ( ~ x ) X � − 1 � total MFP ( ~ x, ~ v ) = f A i ( ~ χ A i ( ~ v ) m A i i • Underground DM-nucleus scatterings have two consequences: A. re-distribution of DM particles inside the Earth B. deceleration of the DM particles • If DM-nucleus interactions are sufficiently strong, these two effects could influence the outcome of a DM detection experiment severely.
Part II W H E N T E R R E S T R I A L D E T E C T O R S L O S E S E N S I T I V I T Y Atmosphere Earth crust Lead shielding Detector
A N A LY T I C D E S C R I P T I O N O F D A R K M AT T E R S T O P P I N G P O W E R • DM traversing through matter lose energy: E max R d h E i d σ i Z X = � n i ( x ) d E R E R d x d E R i 0 • Method A: Find cross section, for which the overburden makes even the fastest particles undetectable. • Method B: Compute the change of the DM spectrum ∞ d R d v vf ( v ) d σ i Z = n DM n T d E R d E R v min ( E R ) J.H. Davis, Phys.Rev.Lett. 119 (2017) no.21, 211302 B.J. Kavanagh, [arXiv:1712.04901] D. Hooper et al., [arXiv:1802.03025]
A N A LY T I C D E S C R I P T I O N O F D A R K M AT T E R S T O P P I N G P O W E R • DM traversing through matter lose energy: E max R d h E i d σ i Z X = � n i ( x ) d E R E R d x d E R i 0 • Method A: Find cross section, for which the overburden makes even the fastest particles undetectable. • Method B: Compute the change of the DM spectrum ∞ d R d v vf ( v ) d σ i Z = n DM n T d E R d E R v min ( E R ) J.H. Davis, Phys.Rev.Lett. 119 (2017) no.21, 211302 B.J. Kavanagh, [arXiv:1712.04901] D. Hooper et al., [arXiv:1802.03025]
M O N T E C A R L O S I M U L AT I O N S Two problems of the analytic approach: 1. DM particles do not move on straight paths. 2. The stopping equation only describes the average behavior of DM particles. Particle tracks from the distribution tails can significantly contribute to detection rates. M.S. Mahdawi, G.R. Farrar, [arXiv:1712:01170]
M O N T E C A R L O S I M U L AT I O N S Two problems of the analytic approach: 1. DM particles do not move on straight paths. 2. The stopping equation only describes the average behavior of DM particles. Particle tracks from the distribution tails can significantly contribute to detection rates. M.S. Mahdawi, G.R. Farrar, [arXiv:1712:01170] Monte Carlo simulations
D M S H I E L D I N G B Y T H E E A R T H C R U S T 10 14 10 11 1 10 8 0.5 10 5 10 2 0.1 10 - 1 10 - 46 10 - 44 10 - 42 10 - 40 10 - 38 10 - 36 10 - 34 10 - 32 10 - 30 M.S. Mahdawi, G.R. Farrar, JCAP 1712 (2017) 004 TE,C. Kouvaris, [arXiv:1802:04764]
D M - N U C L E U S C O N S T R A I N T S 10 - 22 CMB 10 - 27 XQC CRESST 2017 surface 10 - 32 DAMIC ( 2011 ) CRESST III C R E S S T 10 - 37 I I 10 - 42 XENON1T d u n r o k g a c o b n u t r i n e 10 - 47 0.1 0.5 1 5 10
Part IV D M - E L E C T R O N S C AT T E R I N G E X P E R I M E N T S
D M E L E C T R O N E X P E R I M E N T S What’s next?
D M E L E C T R O N E X P E R I M E N T S What’s next? • Implement the full computation of event rates for liquid noble gas experiments and semiconductor targets (ionization and crystal form factors).
D M E L E C T R O N E X P E R I M E N T S What’s next? • Implement the full computation of event rates for liquid noble gas experiments and semiconductor targets (ionization and crystal form factors). R. Essig et al., JHEP 1605 (2016) 046 R. Essig et al., Phys.Rev. D96 (2017) no.4, 043017 DarkSide collaboration, [arXiv:1802:06998]
D M E L E C T R O N E X P E R I M E N T S What’s next? • Implement the full computation of event rates for liquid noble gas experiments and semiconductor targets (ionization and crystal form factors). R. Essig et al., JHEP 1605 (2016) 046 R. Essig et al., Phys.Rev. D96 (2017) no.4, 043017 DarkSide collaboration, [arXiv:1802:06998] • Main focus lies on light mediators
D M E L E C T R O N E X P E R I M E N T S What’s next? • Implement the full computation of event rates for liquid noble gas experiments and semiconductor targets (ionization and crystal form factors). R. Essig et al., JHEP 1605 (2016) 046 R. Essig et al., Phys.Rev. D96 (2017) no.4, 043017 DarkSide collaboration, [arXiv:1802:06998] • Main focus lies on light mediators ➡ new q-dependence in the cross section alter the scattering kinematics and stopping power of the overburden
D M E L E C T R O N E X P E R I M E N T S What’s next? • Implement the full computation of event rates for liquid noble gas experiments and semiconductor targets (ionization and crystal form factors). R. Essig et al., JHEP 1605 (2016) 046 R. Essig et al., Phys.Rev. D96 (2017) no.4, 043017 DarkSide collaboration, [arXiv:1802:06998] • Main focus lies on light mediators ➡ new q-dependence in the cross section alter the scattering kinematics and stopping power of the overburden • Use both analytic and MC methods.
S C AT T E R I N G D Y N A M I C S W I T H L I G H T M E D I AT O R S 1.4 1.4 1.4 F DM ~ 1 F DM ~ 1 F DM = 1 q 2 q 1.2 1.2 1.2 1.0 1.0 1.0 f N ( cos α ) f N ( cos α ) f N ( cos α ) 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.0 0.0 - 1.0 - 0.5 0.0 0.5 1.0 - 1.0 - 0.5 0.0 0.5 1.0 - 1.0 - 0.5 0.0 0.5 1.0 cos α cos α cos α m DM = 1 MeV m DM = 10 MeV m DM = 100 MeV m DM = 1000 MeV v = 50 km v = 300 km v = v esc + v ⊕ sec sec D M F O R M FA C T O R V S C H A R G E S C R E E N I N G 8 1 , for heavy mediator , > a 2 q 2 > < q ref for ED interaction , q , F DM ( q ) = F A ( q ) = 1 + a 2 q 2 ⌘ 2 ⇣ > q ref for light mediator . > , : q
P R E L I M I N A RY R E S U LT S 10 - 24 10 - 23 10 - 22 10 - 24 10 - 25 10 - 23 10 - 25 10 - 24 10 - 26 10 - 26 10 - 25 10 - 27 10 - 27 Y 10 - 26 R Y 10 - 28 A 10 - 28 R 10 - 27 N A 10 - 29 10 - 29 I M N 10 - 28 I σ e [ cm 2 ] I 10 - 30 M σ e [ cm 2 ] σ e [ cm 2 ] L 10 - 30 10 - 29 E I L 10 - 31 R E P 10 - 30 10 - 31 R 10 - 32 P 10 - 31 10 - 32 10 - 33 10 - 32 10 - 34 10 - 33 10 - 33 10 - 35 10 - 34 10 - 34 10 - 36 10 - 35 10 - 35 10 - 37 F DM =( α m e / q ) 2 F DM = 1 10 - 36 10 - 36 F DM = α m e / q 10 - 38 10 - 37 10 - 39 10 - 37 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 4 m χ [ MeV ] m χ [ MeV ] m χ [ MeV ] XENON10 XENON100 SENSEI DarkSide - 50 SuperCDMS ( 2018 ) To Do Further experiments: DarkSide-50 & SuperCDMS Projections for e.g. high-altitude experiments. better understanding on electronic stopping power
D A M A S C U S D a r k M a t t e r S i m u l a t i o n C o d e f o r U n d e rg ro u n d S c a t t e r i n g s The code is public: http://github.com/temken/
Thank you!
Recommend
More recommend