green s function wavefunction and wigner function of the
play

Greens function, wavefunction and Wigner function of the MIC-Kepler - PowerPoint PPT Presentation

Greens function, wavefunction and Wigner function of the MIC-Kepler problem Tokyo University of Science Graduate School of Science, Department of Mathematics, The Akira Yoshioka Laboratory Tomoyo Kanazawa 1 Outline 1. Hamiltonian


  1. Green’s function, wavefunction and Wigner function of the MIC-Kepler problem Tokyo University of Science Graduate School of Science, Department of Mathematics, The Akira Yoshioka Laboratory Tomoyo Kanazawa 1

  2. Outline 1. Hamiltonian description for the MIC-Kepler problem • The reduced Hamiltonian system by an S 1 action • The 4-dimensional conformal Kepler problem 2. Green’s function of the MIC-Kepler problem • The infinite series of its wavefunction 3. Wigner function of the MIC-Kepler problem 2

  3. 1. Hamiltonian description for the MIC-Kepler problem PSfrag repla emen ts z In 1970, McIntosh and Cisneros studied the dynamical system de- magneti for e _ x scribing the motion of a charged particle under the magnetic force due to Dira 's �eld j � j 2 k x _ k � 2 r due to Dirac’s monopole field of strength − µ and the square inverse 3 mr _ x � B � en trifugal for e centrifugal potential force besides the Coulomb’s potential force. k due to Dira 's �eld 2 r Coulom b's for e = − µ B µ r 3 x r = k x k ∥ B µ ∥ = | µ | y O r 2 x µ is quantized µ ∈ ℏ as 2 Z . 3

  4. PSfrag repla emen ts The Hamiltonian description for the MIC-Kepler problem is given by � 4 _ � 3 _ T R T R T. Iwai and Y. Uwano (1986) as follows. 0 0 ( u ; � ) � 1 ( � ) ( x ; p ) ( u ; � ) The MIC-Kepler problem z 1 � is the 2 4 u 1 0 p ( x ) � 2 0 4 u reduced Hamiltonian system ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿ 1 x = � ( S � u ) 0 u of the 4-dimensional u 1 O S � u y � conformal Kepler problem x 3 _ R 4 _ by an S 1 action, R if the associated momentum mapping ψ ( u , ρ ) ≡ µ ̸ = 0 . ψ ( u , ρ ) is invariant under the S 1 action, then R 4 be a subset s.t. let ψ − 1 ( µ ) ⊂ T ∗ u ˙ � { } � ψ ( u , ρ ) = 1 ψ − 1 ( µ ) = ( u , ρ ) ∈ T ∗ R 4 � u ˙ 2( − u 2 ρ 1 + u 1 ρ 2 − u 4 ρ 3 + u 3 ρ 4 ) = µ . � � 4

  5. The MIC-Kepler problem is a triple ( T ∗ ˙ R 3 , σ µ , H µ ) where σ µ = dp x ∧ dx + dp y ∧ dy + dp z ∧ dz − µ r 3 ( x dy ∧ dz + y dz ∧ dx + z dx ∧ dy ) , µ 2 1 2 mr 2 − k 2 m ( p x 2 + p y 2 + p z 2 ) + H µ ( x , p ) = r . R � � � � � ( u ; � ) � PSfrag repla emen ts �( x ; p ) Its energy hyper surface : H µ = E ⇔ Φ( x , p ) ≡ r ( H µ − E ) = 0 is equal to � 4 _ � 3 _ T R T R ( u ; � ) � � ( x ; p ) ( ) π ∗ � µ Φ ( u , ρ ) = 0 � � 1 ( � ) where π µ → T ∗ ˙ R 3 , ψ − 1 ( µ ) − µ Φ = u 2 ( ) π ∗ H − E , u 2 ≡ u 12 + u 22 + u 32 + u 42 . 5

  6. The conformal Kepler problem is a triple ( T ∗ ˙ R 4 , d ρ ∧ d u , H ) where 4 4 ( ) 1 1 − k ρ j 2 ∑ ∑ d ρ ∧ d u ≡ dρ j ∧ du j , H ( u , ρ ) = u 2 . 4 u 2 2 m j =1 j =1 Since u 2 = r > 0 (invariant under the S 1 action), π ∗ µ Φ = 0 is equal to H − E = 0 . The energy hyper surface H = E is equivalent to K ( u , ρ )= ϵ where K ( u , ρ ) is the Hamiltonian of 4-dimensional harmonic oscillator: 4 4 { 1 ρ j 2 + 1 m > 0 mass of pendulum 2 mω 2 u j 2 ∑ ∑ K ( u , ρ ) = ω > 0 angular frequency 2 m j =1 j =1 considering only the case where the real parameter E < 0 and putting both the constant mω 2 ≡ − 8 E and a real parameter ϵ ≡ 4 k . 6

  7. We solved the harmonic oscillator by means of the Moyal product , which brought the following functions. Moyal propagator ( ∗ -exponential) ♣ ( u i + u f ) i ℏ ( t + iy ′ ) K , ρ ) − 4 cos ωz ′ tan ωz ′ ( [ ( u i + u f ) ] i 2 2 e = exp ℏ ωK , ρ ∗ 2 2 2 R 4 and u f = ( u f 1 , u f 2 , u f 3 , u f R 4 where u i = ( u i 1 , u i 2 , u i 3 , u i 4 ) ∈ ˙ 4 ) ∈ ˙ denote initial point and final point of motion respectively. ♣ Feynman’s propagator K ( u f , u i ; z ′ = t + iy ′ ) − m 2 ω 2 [ }] 1 1 − i mω ( u 2 i + u 2 { f ) cos ( ωz ′ ) − 2 u i · u f = sin 2 ( ωz ′ ) exp 4 π 2 ℏ 2 sin ( ωz ′ ) 2 ℏ ∞ C n e inωt ∑ = n = −∞ ∫ π/ω C n ≡ ω − π/ω K ( u f , u i ; τ + iy ′ ) e − inωτ dτ . where 2 π 7

  8. ♣ Green’s function G ( u f , u i ; ϵ ) ∫ ∞   ∞  e − y ′ + iϵ i ( t + iy ′ ) dt C n e inωt ∑ = lim ℏ  y ′ → +0 ℏ 0 n = −∞ ∞ m 2 ω 2 − mω 1 [ ] 2 ℏ ( u 2 i + u 2 ∑ ∑ = π 2 ℏ 2 exp f ) ϵ − ( N + 2) ℏ ω N =0 l 1 + l 2 + l 3 + l 4 = N 1 (√ mω (√ mω (√ mω (√ mω ) ) ) ) ℏ u f ℏ u f ℏ u i ℏ u i 2 N l 1 ! l 2 ! l 3 ! l 4 ! H l 1 H l 1 H l 2 H l 2 1 2 1 2 (√ mω (√ mω (√ mω (√ mω ) ) ) ) ℏ u f ℏ u f ℏ u i ℏ u i H l 3 H l 3 H l 4 H l 4 3 4 3 4 where n − 2 ≡ N = l 1 + l 2 + l 3 + l 4 ( l 1 , l 2 , l 3 , l 4 ∈ N ∪ { 0 } ), H l ( X ) is the Hermite polynomial : H l ( X ) = ( − 1) l e X 2 d l dX l e − X 2 . 8

  9. Moreover, we denote by Ψ N ( u ) the wave function of 4-dimensional R 4 harmonic oscillator on ˙ 1 mω − mω [ ] Ψ N ( u ) = 2 ℏ ( u 2 1 + u 2 2 + u 2 3 + u 2 exp 4 ) ← − √ π ℏ 2 N l 1 ! l 2 ! l 3 ! l 4 ! (√ mω (√ mω (√ mω (√ mω ) ) ) ) H l 1 ℏ u 1 H l 2 ℏ u 2 H l 3 ℏ u 3 H l 4 ℏ u 4 satisfying   4 4 K = − ℏ 2 ∂ 2  + 1 2 mω 2 u 2 ˆ ˆ ∑ ∑ K Ψ N ( u ) = ϵ Ψ N ( u ) where j .  ∂u 2 2 m j =1 j j =1 Then we verify ∞ 1 ∑ G ( u f , u i ; ϵ ) = ϵ − ( N + 2) ℏ ω Ψ N ( u f ) Ψ N ( u i ) . N =0 9

  10. PSfrag repla emen ts 0 0 0 t ! z = t + iy iz it Harmoni K K ~ ~ e e � � K = � 0 ( y 6 = 0) os illator 2 0 � 1 � � 4 k m! � 8 j E j E < 0 y > 0 F H = E � 4 _ onformal T R L 0 m K ( u ; u ; z ) f i G ( u ; u ; 4 k ) f i Kepler [ � 0 � � = 0 y ! +0 � � 1 ( � ) � = 0 m MIC-Kepler G ( x ; x ; E ) or G ( x ; x ; E ) + f i � f i H = E � � 3 _ T R 10

  11. 2. Green’s function of the MIC-Kepler problem − 2 mk 2 We suppose E ̸ = ( N = 0 , 1 , 2 , · · · ) , then reduce ℏ 2 ( N + 2) 2 the Green’s function of the conformal Kepler problem G ( u f , u i ; ϵ ≡ 4 k ) assumed mω 2 ≡ − 8 E to the Green’s function of the MIC-Kepler problem G + ( x f , x i ; E ) or G − ( x f , x i ; E ) by an S 1 action. G + ( x f , x i ; E ) and G − ( x f , x i ; E ) denote the Green’s functions in the following local coordinates τ + and τ − respectively. τ + : π − 1 ( U + ) ∋ u �− → ( π ( u ) , φ + ( u )) = ( x ( r, θ, ϕ ) , exp( iν/ 2)) ∈ U + × S 1  u 1 = √ r cos θ 2 cos ν + ϕ , u 2 = √ r cos θ 2 sin ν + ϕ    x = r sin θ cos ϕ   2 2     y = r sin θ sin ϕ , u 3 = √ r sin θ 2 cos ν − ϕ , u 4 = √ r sin θ 2 sin ν − ϕ z = r cos θ        2 2  where U + = R 3 ; r > 0 , 0 ≤ θ < π , 0 ≤ ϕ < 2 π { } x ( r, θ, ϕ ) ∈ ˙ , 0 ≤ ν < 4 π . ← − 11

  12. τ − : π − 1 ( U − ) ∋ u �− ν/ 2)) ∈ U − × S 1 r, ˜ θ, ˜ → ( π ( u ) , φ − ( u )) = ( x (˜ ϕ ) , exp( i ˜ ˜ ν + ˜ ˜ ν + ˜  √ √ 2 cos ˜ 2 sin ˜ θ ϕ θ ϕ  u 1 = − r sin ˜ , u 2 = − r sin ˜ r sin ˜ θ cos ˜   x = ˜ ϕ   2 2     r sin ˜ θ sin ˜ y = − ˜ ϕ , r cos ˜ √ ˜ ν + 3˜ √ ˜ ν + 3˜ z = − ˜ 2 cos ˜ θ ϕ 2 sin ˜ θ ϕ  θ     u 3 = − r cos ˜ , u 4 = − ˜ r cos    2 2 where R 3 ; ˜ U − = { } r, ˜ θ, ˜ ϕ ) ∈ ˙ r > 0 , 0 ≤ ˜ θ < π , 0 < ˜ x (˜ ϕ ≤ 2 π , 0 ≤ ˜ ν < 4 π . ← − z z x x r = ˜ r r = ˜ r θ ˜ ϕ O y O y x ˜ θ x ϕ 12

  13. Iwai and Uwano also investigated the “quantized” system (1988) : The “quantized” conformal Kepler problem is defined as a pair ( L 2 ( R 4 ; 4 u 2 d u ) , ˆ H ) where L 2 ( R 4 ; 4 u 2 d u ) :  The Hilbert space of square integrable   complex-valued functions on R 4 ,        4 H = − ℏ 2 ∂ 2  1  − k ˆ ∑ : The Hamiltonian operator.    ∂u 2 4 u 2 u 2 2 m   j =1 j   • They introduce complex line bundles L l ( l ∈ Z ) on which the linear connection is induced from a connection on the principal R 4 → ˙ R 3 . fibre bundle π : ˙ • By an S 1 action, L 2 ( R 4 ; 4 u 2 d u ) is reduced to the Hilbert space, denoted by Γ l , of square integrable cross sections in L l over R 3 . ˙ 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend