graph spectral conditions and structural properties
play

Graph spectral conditions and structural properties Hong-Jian Lai - PowerPoint PPT Presentation

Graph spectral conditions and structural properties Hong-Jian Lai West Virginia University p. 1/39 The problems G : = a (connected) simple graph. p. 2/39 The problems G : = a (connected) simple graph. A G = ( a ij ) n n = adjacency


  1. Cioaba’s Problem Let G be a d -regular graph. Theorem (Cioaba and Wong, LAA 2012) Assume that 3 4 ≤ d . If λ 2 ( G ) < d − d +1 , then τ ( G ) ≥ 2 . Theorem (Cioaba and Wong, LAA 2012) Assume that 5 6 ≤ d . If λ 2 ( G ) < d − d +1 , then τ ( G ) ≥ 3 . – p. 11/39

  2. Cioaba’s Problem Let G be a d -regular graph. Theorem (Cioaba and Wong, LAA 2012) Assume that 3 4 ≤ d . If λ 2 ( G ) < d − d +1 , then τ ( G ) ≥ 2 . Theorem (Cioaba and Wong, LAA 2012) Assume that 5 6 ≤ d . If λ 2 ( G ) < d − d +1 , then τ ( G ) ≥ 3 . Conjecture (Cioaba and Wong, LAA 2012) Assume that 2 ≤ 2 k ≤ d . If λ 2 ( G ) < d − 2 k − 1 d +1 , then τ ( G ) ≥ k . – p. 11/39

  3. Improvements in JGT, 2016 Can we work on generic graphs in stead of regular graphs? – p. 12/39

  4. Improvements in JGT, 2016 Can we work on generic graphs in stead of regular graphs? Let G be graph with δ ( G ) = δ and k > 0 be an integer. – p. 12/39

  5. Improvements in JGT, 2016 Can we work on generic graphs in stead of regular graphs? Let G be graph with δ ( G ) = δ and k > 0 be an integer. . Li, S. Yao and HJL, JGT 2016) If δ ≥ 4 Theorem (X. Gu, P 3 and λ 2 ( G ) < δ − δ +1 , then τ ( G ) ≥ 2 . – p. 12/39

  6. Improvements in JGT, 2016 Can we work on generic graphs in stead of regular graphs? Let G be graph with δ ( G ) = δ and k > 0 be an integer. . Li, S. Yao and HJL, JGT 2016) If δ ≥ 4 Theorem (X. Gu, P 3 and λ 2 ( G ) < δ − δ +1 , then τ ( G ) ≥ 2 . Theorem (X. Gu, P . Li, S. Yao and HJL, JGT 2016) If δ ≥ 6 5 and λ 2 ( G ) < δ − δ +1 , then τ ( G ) ≥ 3 . – p. 12/39

  7. Improvements in JGT, 2016 Let G be graph with δ ( G ) = δ and k > 0 be an integer. – p. 13/39

  8. Improvements in JGT, 2016 Let G be graph with δ ( G ) = δ and k > 0 be an integer. Theorem (Cioaba, LAA 2010) If G is d -regular, d ≥ 2 k , and λ 2 ( G ) < d − 4 k − 2 d +1 , then τ ( G ) ≥ k . – p. 13/39

  9. Improvements in JGT, 2016 Let G be graph with δ ( G ) = δ and k > 0 be an integer. Theorem (Cioaba, LAA 2010) If G is d -regular, d ≥ 2 k , and λ 2 ( G ) < d − 4 k − 2 d +1 , then τ ( G ) ≥ k . . Li, S. Yao and HJL, JGT 2016) If δ ≥ 2 k Theorem (X. Gu, P and λ 2 ( G ) < δ − 3 k − 1 δ +1 , then τ ( G ) ≥ k . – p. 13/39

  10. Improvements in JGT, 2016 Let G be graph with δ ( G ) = δ and k > 0 be an integer. Theorem (Cioaba, LAA 2010) If G is d -regular, d ≥ 2 k , and λ 2 ( G ) < d − 4 k − 2 d +1 , then τ ( G ) ≥ k . . Li, S. Yao and HJL, JGT 2016) If δ ≥ 2 k Theorem (X. Gu, P and λ 2 ( G ) < δ − 3 k − 1 δ +1 , then τ ( G ) ≥ k . Conjecture Let G be graph with δ ( G ) = δ , and 4 ≤ 2 k ≤ δ . If λ 2 ( G ) < δ − 2 k − 1 δ +1 , then τ ( G ) ≥ k . – p. 13/39

  11. Over view of progresses Conjecture ( k, δ ) Let G be graph with δ ( G ) = δ and 2 k ≤ δ . If λ 2 ( G ) < δ − 2 k − 1 δ +1 , then τ ( G ) ≥ k . – p. 14/39

  12. Over view of progresses Conjecture ( k, δ ) Let G be graph with δ ( G ) = δ and 2 k ≤ δ . If λ 2 ( G ) < δ − 2 k − 1 δ +1 , then τ ( G ) ≥ k . Let G be graph on n vertices with δ = δ ( G ) ≥ 2 k ≥ 4 . – p. 14/39

  13. Over view of progresses Conjecture ( k, δ ) Let G be graph with δ ( G ) = δ and 2 k ≤ δ . If λ 2 ( G ) < δ − 2 k − 1 δ +1 , then τ ( G ) ≥ k . Let G be graph on n vertices with δ = δ ( G ) ≥ 2 k ≥ 4 . Theorem (G. Li and L. Shi, LAA 2013; Y. Hong, Q. Liu, and HJL, LAA 2014) For any integer k ≥ 2 and δ ≥ 2 k , there exists an integer N = N ( k, δ ) such that if n ≥ N , then Conjecture( k, δ ) holds, – p. 14/39

  14. Over view of progresses Conjecture (Gu et al.) Let G be a graph with minimum degree δ ≥ 2 k ≥ 4 . If λ 2 ( G ) < δ − 2 k − 1 δ +1 , then τ ( G ) ≥ k . – p. 15/39

  15. Over view of progresses Conjecture (Gu et al.) Let G be a graph with minimum degree δ ≥ 2 k ≥ 4 . If λ 2 ( G ) < δ − 2 k − 1 δ +1 , then τ ( G ) ≥ k . It is a theorem. (Y. Hong, Q. Liu, Gu, and HJL, LAA 2014) – p. 15/39

  16. Over view of progresses Conjecture (Gu et al.) Let G be a graph with minimum degree δ ≥ 2 k ≥ 4 . If λ 2 ( G ) < δ − 2 k − 1 δ +1 , then τ ( G ) ≥ k . It is a theorem. (Y. Hong, Q. Liu, Gu, and HJL, LAA 2014) How about Laplacian eigenvalues? (Algebraic connectivity)? – p. 15/39

  17. Over view of progresses Conjecture (Gu et al.) Let G be a graph with minimum degree δ ≥ 2 k ≥ 4 . If λ 2 ( G ) < δ − 2 k − 1 δ +1 , then τ ( G ) ≥ k . It is a theorem. (Y. Hong, Q. Liu, Gu, and HJL, LAA 2014) How about Laplacian eigenvalues? (Algebraic connectivity)? How about signless Laplacian eigenvalues? – p. 15/39

  18. Over view of progresses A = A ( G ) : = adjacency matrix of G . – p. 16/39

  19. Over view of progresses A = A ( G ) : = adjacency matrix of G . D = D ( G ) : = degree diagonal matrix of G . – p. 16/39

  20. Over view of progresses A = A ( G ) : = adjacency matrix of G . D = D ( G ) : = degree diagonal matrix of G . A − D gives Laplacian eigenvalues. – p. 16/39

  21. Over view of progresses A = A ( G ) : = adjacency matrix of G . D = D ( G ) : = degree diagonal matrix of G . A − D gives Laplacian eigenvalues. D + A gives signless Laplacian eigenvalues. – p. 16/39

  22. Over view of progresses A = A ( G ) : = adjacency matrix of G . D = D ( G ) : = degree diagonal matrix of G . A − D gives Laplacian eigenvalues. D + A gives signless Laplacian eigenvalues. a : = a real number. – p. 16/39

  23. Over view of progresses A = A ( G ) : = adjacency matrix of G . D = D ( G ) : = degree diagonal matrix of G . A − D gives Laplacian eigenvalues. D + A gives signless Laplacian eigenvalues. a : = a real number. λ 1 ( G, a ) ≥ λ 2 ( G, a ) ≥ · · · ≥ λ n ( G, a ) are eigenvalues of aD + A . – p. 16/39

  24. Over view of progresses λ 1 ( G, a ) ≥ λ 2 ( G, a ) ≥ · · · ≥ λ n ( G, a ) are eigenvalues of aD + A . – p. 17/39

  25. Over view of progresses λ 1 ( G, a ) ≥ λ 2 ( G, a ) ≥ · · · ≥ λ n ( G, a ) are eigenvalues of aD + A . Theorem. (Liu, Hong, Gu, HJL, LAA 2014) Let k be an integer and G be a graph of order n and minimum degree δ ≥ 2 k . If λ 2 ( G, a ) < ( a + 1) δ − 2 k − 1 δ +1 then τ ( G ) ≥ k . – p. 17/39

  26. Over view of progresses λ 1 ( G, a ) ≥ λ 2 ( G, a ) ≥ · · · ≥ λ n ( G, a ) are eigenvalues of aD + A . Theorem. (Liu, Hong, Gu, HJL, LAA 2014) Let k be an integer and G be a graph of order n and minimum degree δ ≥ 2 k . If λ 2 ( G, a ) < ( a + 1) δ − 2 k − 1 δ +1 then τ ( G ) ≥ k . Choose different values of a ∈ { 0 , 1 , − 1 } . – p. 17/39

  27. Over view of progresses λ i ( G ) : = the i th largest eigenvalue of A . µ i ( G ) : = the i th largest eigenvalue of D − A . q i ( G ) : = the i th largest eigenvalue of D + A . – p. 18/39

  28. Over view of progresses λ i ( G ) : = the i th largest eigenvalue of A . µ i ( G ) : = the i th largest eigenvalue of D − A . q i ( G ) : = the i th largest eigenvalue of D + A . Theorem. (Liu, Hong, Gu, HJL, LAA 2014) (1) If λ 2 ( G ) < δ − 2 k − 1 δ +1 , then τ ( G ) ≥ k . (2) If q 2 ( G ) < 2 δ − 2 k − 1 δ +1 , then τ ( G ) ≥ k . (3) If µ n − 1 ( G ) > 2 k − 1 δ +1 , then τ ( G ) ≥ k . – p. 18/39

  29. Outline of Proof of Cioaba-Wong Conjecture The U -Lemma. – p. 19/39

  30. Outline of Proof of Cioaba-Wong Conjecture The U -Lemma. Quadratic Inequality. – p. 19/39

  31. Outline of Proof of Cioaba-Wong Conjecture The U -Lemma. Quadratic Inequality. Proof of Cioaba-Wong Conjecture. – p. 19/39

  32. Outline of Proof of Cioaba-Wong Conjecture U -Lemma Let G be a graph with minimum degree δ > 0 and ∅ � = U ⊂ V ( G ) . If d ( U ) ≤ δ − 1 , then | U | ≥ δ + 1 . – p. 20/39

  33. Outline of Proof of Cioaba-Wong Conjecture U -Lemma Let G be a graph with minimum degree δ > 0 and ∅ � = U ⊂ V ( G ) . If d ( U ) ≤ δ − 1 , then | U | ≥ δ + 1 . Proof: d ( U ) ≤ δ − 1 means U has a vertex u ∈ U not incident with any edges in [ U, V − U ] . – p. 20/39

  34. Outline of Proof of Cioaba-Wong Conjecture U -Lemma Let G be a graph with minimum degree δ > 0 and ∅ � = U ⊂ V ( G ) . If d ( U ) ≤ δ − 1 , then | U | ≥ δ + 1 . Proof: d ( U ) ≤ δ − 1 means U has a vertex u ∈ U not incident with any edges in [ U, V − U ] . N G ( u ) ⊆ U . – p. 20/39

  35. Outline of Proof of Cioaba-Wong Conjecture U -Lemma Let G be a graph with minimum degree δ > 0 and ∅ � = U ⊂ V ( G ) . If d ( U ) ≤ δ − 1 , then | U | ≥ δ + 1 . Proof: d ( U ) ≤ δ − 1 means U has a vertex u ∈ U not incident with any edges in [ U, V − U ] . N G ( u ) ⊆ U . | U | ≥ |{ u } ∪ N G ( u ) | ≥ 1 + δ . – p. 20/39

  36. Outline of Proof of Cioaba-Wong Conjecture Lemma (Quadratic Inequality) Let X, Y ⊂ V ( G ) with X ∩ Y = ∅ . If – p. 21/39

  37. Outline of Proof of Cioaba-Wong Conjecture Lemma (Quadratic Inequality) Let X, Y ⊂ V ( G ) with X ∩ Y = ∅ . If λ 2 ( G, a ) ≤ ( a + 1) δ − max { d ( X ) | X | , d ( Y ) | Y | } , then – p. 21/39

  38. Outline of Proof of Cioaba-Wong Conjecture Lemma (Quadratic Inequality) Let X, Y ⊂ V ( G ) with X ∩ Y = ∅ . If λ 2 ( G, a ) ≤ ( a + 1) δ − max { d ( X ) | X | , d ( Y ) | Y | } , then (( a + 1) δ − d ( X ) | [ X, Y ] | 2 ≥ | X | − λ 2 ( G, a )) · (( a + 1) δ − d ( Y ) | Y | − λ 2 ( G, a )) | X | · | Y | . – p. 21/39

  39. Proof of Cioaba-Wong Conjecture (i) Theorem Let k be an integer and G be a graph of order n and minimum degree δ ≥ 2 k . If λ 2 ( G, a ) < ( a + 1) δ − 2 k − 1 δ +1 then τ ( G ) ≥ k . – p. 22/39

  40. Proof of Cioaba-Wong Conjecture (i) Theorem Let k be an integer and G be a graph of order n and minimum degree δ ≥ 2 k . If λ 2 ( G, a ) < ( a + 1) δ − 2 k − 1 δ +1 then τ ( G ) ≥ k . Approach of the proof: For any partition ( V 1 , V 2 , . . . , V t ) , want to prove � 1 ≤ i<j ≤ t | [ V i , V j ] G | ≥ k ( t − 1) . – p. 22/39

  41. Proof of Cioaba-Wong Conjecture (ii) Assume that d ( V 1 ) ≤ d ( V 2 ) ≤ . . . ≤ d ( V t ) . – p. 23/39

  42. Proof of Cioaba-Wong Conjecture (ii) Assume that d ( V 1 ) ≤ d ( V 2 ) ≤ . . . ≤ d ( V t ) . If d ( V 1 ) ≥ 2 k , then � 1 ≤ i<j ≤ t | [ V i , V j ] G | ≥ kt . Assume d ( V 1 ) ≤ 2 k − 1 . – p. 23/39

  43. Proof of Cioaba-Wong Conjecture (ii) Assume that d ( V 1 ) ≤ d ( V 2 ) ≤ . . . ≤ d ( V t ) . If d ( V 1 ) ≥ 2 k , then � 1 ≤ i<j ≤ t | [ V i , V j ] G | ≥ kt . Assume d ( V 1 ) ≤ 2 k − 1 . Let 1 ≤ s ≤ t be such that d ( V s ) ≤ 2 k − 1 and d ( V s +1 ) ≥ 2 k (if s < t ). – p. 23/39

  44. Proof of Cioaba-Wong Conjecture (ii) Assume that d ( V 1 ) ≤ d ( V 2 ) ≤ . . . ≤ d ( V t ) . If d ( V 1 ) ≥ 2 k , then � 1 ≤ i<j ≤ t | [ V i , V j ] G | ≥ kt . Assume d ( V 1 ) ≤ 2 k − 1 . Let 1 ≤ s ≤ t be such that d ( V s ) ≤ 2 k − 1 and d ( V s +1 ) ≥ 2 k (if s < t ). By U-lemma, for 1 ≤ i ≤ s , | V i | ≥ δ + 1 . – p. 23/39

  45. Proof of Cioaba-Wong Conjectur (iii) Assumption of Theorem, for 1 ≤ i ≤ s . λ 2 ( G, a ) < ( a + 1) δ − 2 k − 1 δ + 1 ≤ ( a + 1) δ − d ( V i ) | V i | . – p. 24/39

  46. Proof of Cioaba-Wong Conjectur (iii) Assumption of Theorem, for 1 ≤ i ≤ s . λ 2 ( G, a ) < ( a + 1) δ − 2 k − 1 δ + 1 ≤ ( a + 1) δ − d ( V i ) | V i | . By Quadratic Inequality, for 2 ≤ i ≤ s , ( a + 1) δ − d ( V 1 ) | [ V 1 , V i ] | 2 � � ≥ | V 1 | − λ 2 ( G, a ) · ( a + 1) δ − d ( V i ) � � | V i | − λ 2 ( G, a ) | V 1 | · | V i | (2 k − 1 − d ( V 1 ))(2 k − 1 − d ( V i )) > (2 k − 1 − d ( V i )) 2 . ≥ – p. 24/39

  47. Proof of Cioaba-Wong Conjectur (iii) Assumption of Theorem, for 1 ≤ i ≤ s . λ 2 ( G, a ) < ( a + 1) δ − 2 k − 1 δ + 1 ≤ ( a + 1) δ − d ( V i ) | V i | . By Quadratic Inequality, for 2 ≤ i ≤ s , ( a + 1) δ − d ( V 1 ) | [ V 1 , V i ] | 2 � � ≥ | V 1 | − λ 2 ( G, a ) · ( a + 1) δ − d ( V i ) � � | V i | − λ 2 ( G, a ) | V 1 | · | V i | (2 k − 1 − d ( V 1 ))(2 k − 1 − d ( V i )) > (2 k − 1 − d ( V i )) 2 . ≥ | [ V 1 , V i ] | > 2 k − 1 − d ( V i ) , for 2 ≤ i ≤ s . – p. 24/39

  48. Proof of Cioaba-Wong Conjecture (iv) Thus | [ V 1 , V i ] | ≥ 2 k − d ( V i ) , for 2 ≤ i ≤ s . – p. 25/39

  49. Proof of Cioaba-Wong Conjecture (iv) Thus | [ V 1 , V i ] | ≥ 2 k − d ( V i ) , for 2 ≤ i ≤ s . d ( V 1 ) ≥ � s i =2 | [ V 1 , V i ] | ≥ � s � � 2 k − d ( V i ) . i =2 – p. 25/39

  50. Proof of Cioaba-Wong Conjecture (iv) Thus | [ V 1 , V i ] | ≥ 2 k − d ( V i ) , for 2 ≤ i ≤ s . d ( V 1 ) ≥ � s i =2 | [ V 1 , V i ] | ≥ � s � � 2 k − d ( V i ) . i =2 t s t � � � d ( V i ) = d ( V 1 ) + d ( V i ) + d ( V i ) i =1 i =2 i = s +1 ≥ 2 k ( s − 1) + 2 k ( t − s ) = 2 k ( t − 1) . – p. 25/39

  51. References 1 A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer Universitext 2012. (http://homepages.cwi.nl/ aeb/math/ipm.pdf). – p. 26/39

  52. References 1 A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer Universitext 2012. (http://homepages.cwi.nl/ aeb/math/ipm.pdf). 2 P . A. Catlin, H.-J. Lai and Y. Shao, Edge-connectivity and edge-disjoint spanning trees, Discrete Math., 309 (2009), 1033-1040. – p. 26/39

  53. References 1 A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer Universitext 2012. (http://homepages.cwi.nl/ aeb/math/ipm.pdf). 2 P . A. Catlin, H.-J. Lai and Y. Shao, Edge-connectivity and edge-disjoint spanning trees, Discrete Math., 309 (2009), 1033-1040. 3 S. M. Cioab˘ a and W.Wong, Edge-disjoint spanning trees and eigenvalues of regular graphs, Linear Algebra Appl., 437 (2012) 630-647. – p. 26/39

  54. References 1 A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer Universitext 2012. (http://homepages.cwi.nl/ aeb/math/ipm.pdf). 2 P . A. Catlin, H.-J. Lai and Y. Shao, Edge-connectivity and edge-disjoint spanning trees, Discrete Math., 309 (2009), 1033-1040. 3 S. M. Cioab˘ a and W.Wong, Edge-disjoint spanning trees and eigenvalues of regular graphs, Linear Algebra Appl., 437 (2012) 630-647. 4 W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226/228 (1995), 593-616. – p. 26/39

  55. References 1 A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer Universitext 2012. (http://homepages.cwi.nl/ aeb/math/ipm.pdf). 2 P . A. Catlin, H.-J. Lai and Y. Shao, Edge-connectivity and edge-disjoint spanning trees, Discrete Math., 309 (2009), 1033-1040. 3 S. M. Cioab˘ a and W.Wong, Edge-disjoint spanning trees and eigenvalues of regular graphs, Linear Algebra Appl., 437 (2012) 630-647. 4 W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226/228 (1995), 593-616. 5 G. Li and L. Shi, Edge-disjoint spanning trees and eigenvalues of graphs, Linear Algebra Appl. 439 (2013), 2784-2789. – p. 26/39

  56. References 6 X. Gu, H. Lai, P . Li, S. Yao, Edge-disjoint spanning trees, edge connectivity and eigenvalues in graphs, J. Graph Theory, 81 (2016) 16-29. – p. 27/39

  57. References 6 X. Gu, H. Lai, P . Li, S. Yao, Edge-disjoint spanning trees, edge connectivity and eigenvalues in graphs, J. Graph Theory, 81 (2016) 16-29. 7 Q. Liu, Y. Hong, H. Lai, Edge-disjoint spanning trees and eigenvalues, Linear Algebra Appl., 444 (2014) 146-151. – p. 27/39

  58. References 6 X. Gu, H. Lai, P . Li, S. Yao, Edge-disjoint spanning trees, edge connectivity and eigenvalues in graphs, J. Graph Theory, 81 (2016) 16-29. 7 Q. Liu, Y. Hong, H. Lai, Edge-disjoint spanning trees and eigenvalues, Linear Algebra Appl., 444 (2014) 146-151. 8 Q. Liu, Y. Hong, X. Gu, H. Lai, Note on Edge-disjoint spanning trees and eigenvalues, Linear Algebra Appl., 458 (2014), 128-133. – p. 27/39

  59. References 6 X. Gu, H. Lai, P . Li, S. Yao, Edge-disjoint spanning trees, edge connectivity and eigenvalues in graphs, J. Graph Theory, 81 (2016) 16-29. 7 Q. Liu, Y. Hong, H. Lai, Edge-disjoint spanning trees and eigenvalues, Linear Algebra Appl., 444 (2014) 146-151. 8 Q. Liu, Y. Hong, X. Gu, H. Lai, Note on Edge-disjoint spanning trees and eigenvalues, Linear Algebra Appl., 458 (2014), 128-133. 9 Y. Hong, X. Gu, H. Lai, Q. Liu, Fractional spanning tree packing, forest covering and eigenvalues, Discrete Applied Math., 213 (2016) 219-223. – p. 27/39

  60. References 6 X. Gu, H. Lai, P . Li, S. Yao, Edge-disjoint spanning trees, edge connectivity and eigenvalues in graphs, J. Graph Theory, 81 (2016) 16-29. 7 Q. Liu, Y. Hong, H. Lai, Edge-disjoint spanning trees and eigenvalues, Linear Algebra Appl., 444 (2014) 146-151. 8 Q. Liu, Y. Hong, X. Gu, H. Lai, Note on Edge-disjoint spanning trees and eigenvalues, Linear Algebra Appl., 458 (2014), 128-133. 9 Y. Hong, X. Gu, H. Lai, Q. Liu, Fractional spanning tree packing, forest covering and eigenvalues, Discrete Applied Math., 213 (2016) 219-223. – p. 27/39

  61. Connectivity and eigenvalue Problem (Abiad, Brimkov, Mart´ lnez-Rivera, O, and Zhang, Electronic Journal of Linear Algebra, 2018) Find best possible condition on λ 2 ( G ) to warrant κ ( G ) ≥ k . – p. 28/39

  62. Connectivity and eigenvalue Problem (Abiad, Brimkov, Mart´ lnez-Rivera, O, and Zhang, Electronic Journal of Linear Algebra, 2018) Find best possible condition on λ 2 ( G ) to warrant κ ( G ) ≥ k . Let d and k be integers with d ≥ k ≥ 2 and G be a d -regular multigraph. Each of the following holds. – p. 28/39

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend