global frequency distribution of smoke in the presence of
play

Global frequency distribution of Smoke in the presence of Clouds* - PowerPoint PPT Presentation

B iomass-burning 15 A erosols & 18 March 2013 background molecules + ice crystals S tratocumulus Height (km) 10 Mean 1 E nvironment: L ifecycles & 5 background molecules + aerosols = 532nm In teractions Doi Angkhang site


  1. B iomass-burning 15 A erosols & 18 March 2013 background molecules + ice crystals S tratocumulus Height (km) 10 Mean ± 1σ E nvironment: L ifecycles & 5 background molecules + aerosols λ = 532nm In teractions Doi Angkhang site (Counts  km 2  µ J -1 µ s -1 ) 0 0.0 0.5 1.0 1.5 2.0 2.5 E xperiment Normalized Relative Backscatter Satellite-surface perspectives of air quality and aerosol-cloud effects on the environment: 2013-2015 An overview of 7-SEAS/BASELInE NASA: S.-C. Tsay , N. C. Hsu, B. N. Holben, E. J. Welton Taiwan: led by N.-H. George Lin (NCU) Thailand: led by S. Janjai (SU) and by S. Chantara (CMU) Vietnam: led by Anh X. Nguyen (IGP-VAST)

  2. Global frequency distribution of Smoke in the presence of Clouds* Aug. 2007-2015, 5 ° x 5 ° CALIOP: SCAR-B Aqua/MODIS: 532 nm Attenuated 1995-1996 Terra/MODIS Backscatter (km -1 sr -1 ) 4 August 2007 25 Feb. 2000 Recirculative Gyre TOMS data: 1997-2001 Frequency Day/Year • West coast of California: Ship tracks, a small-scale aerosol-cloud interaction • South America: Convective “ fumulus ” clouds, diurnal cycle plays important role • Southern Africa: Distinct, decoupled aerosol-cloud layers over west coast • Southeast Asia: Upwind smoke and downwind coupled-aerosol-cloud system *Tsay, Hsu, Lau, et al., 2013, Atmos. Environ., 78, 20-34.

  3. 7-SEAS (2013) special issue, Atmospheric Environment (28/37>75%) 7-SEAS (2017) special issue, Aerosol & Air Quality Res. (27/46>58%)

  4. L1/EPIC 7-SEAS/BASELInE: a baseline Strategy* GEO/AHI, ABI … CloudSat CALIPSO Aqua : MPLNET Terra : AERONET : Radiometer : Chemistry : Mobile Labs *Tsay, Maring, Lin, et al., 2017, Aerosol & Air Quality Research, in review. Si-Chee Tsay, Deputy September 21, 2016 EOS/Terra Project Scientist NASA/GSFC

  5. Surface-based Mobile Atmospheric SMARTLabs : Research & Testbed Laboratories 2011 2001 2003 DISCOVER-AQ ACE-Asia DOE/ARM EAST-AIRE IPHEx 2014 Aerosol IOP 2005 RAJO-MEGHA 2002 NAMMA 2009 CRYSTAL 2006 UAE 2 CHINA 2 - PRIDE BASE-ASIA -FACE 2004 AMY 2008 2000 2006 7-SEAS SAFARI 2010-15 2000 http://smartlabs.gsfc.nasa.gov/ Terra/MODIS Product • Small Operations (2-3 operators/scientists), yet Cost-Effective: over 10 countries on 3 continents for aerosol-cloud-radiation studies • Achievements: >80 SMARTLabs publications since 2000 & many in process for the spring 2010-2015 7-SEAS deployments • Future Missions: Cal/Val for S-NPP, GPM, …, and EV deployments

  6. SMART : Surface-sensing Measurements for Atmospheric Radiative Transfer (in mini-Network mode) • Better understanding of excess solar absorption • Spectral Derivatives: partitioning subvisual cirrus & aerosols • Lagrange-/DRAGON-like network deployment with AERONET e-Pandora Spectrometer (280-800 nm) Pyranometer GPS Pyrgeometer Pressure Sensor 1.0 Spectral Irradiance (Wm -2 nm -1 ) Products: Applying Ideal Gas Law: • Ji and Tsay, 2010: A novel non-intrusive 0.8 • O 3 , NO 2 method to resolve the thermal-dome- • Cirrus ( τ ) 0.6 Cirrus (m) effect of pyranometers: Instrumentation Cirrus (o) Aerosol (m) • Aerosols ( τ ) and observational basis , JGR., 115, D00K21 . Aerosol (o) 0.4 • TDE-corrected • Ji, Tsay, et al ., 2011: ----- Radiometric cali- solar irradiance 0.2 bration and implication , JGR., 116, D24105 . • Terrestrial • Tsay, et al ., 2016: ----- From the lab to field 0.0 350 400 450 500 550 600 650 700 750 irradiance measurements , to be submitted. Wavelength (nm) • Hansell, Tsay, et al., 2014, Spectral derivative analysis of solar spectroradiometric measurements: Theoretical basis, JGR, 119, 8908-8924.

  7. COMMIT : Chemical, Optical & Microphysical Measurements of In-situ Troposphere Aerosol ( & Precursor) CCN Hygroscopicity/Growth Factor* , ^  Optical: Neph (Wet/Dry)  Microphysical: SMPS (Wet/Dry)  Activation ( κ ): f (Size, Comp, SS) Host >25 instruments • Trace gas (CO, CO 2 , SO 2 , NO x /NO y , and O 3 ) concentrations; • PM 1 , PM 2.5 , PM 10 mass concentration; • 3λ -light (RGB) extinction; 3λ - & 7λ -light absorption; • 3λ -light scattering, in series operation for dry/wet conditions; • Ambient size distribution (TSI/FMPS and TSI/APS); • Wet/dry size distribution, in parallel operation (TSI/SMPS); • Aerosol activation (DMT/CCN counter). *Hsiao, Tsay, et al., 2016, Aero. Air Qual. Res., doi:10.4209/aaqr.2015.07.0447 . ^Pantina, Tsay, et al., 2016, Aero. Air Qual. Res., doi:10.4209/aaqr.2015.011.0630 .

  8. ACHIEVE : Aerosol-Cloud-Humidity Interaction Exploring & Validating Enterprise W-band 94 GHz Calibration tower pulsed radar NEΔR = -55 dBz Corner-cube reflector SCR = 36 dB X-band 10 GHz Mast FM-CW rotator e-Pandora radar 280-800 nm ~30m K-band Ceilometer All-sky 24 GHz 910 nm imager FM-CW radar Atmospheric emitted radiance interferometer 7-channel scanning microwave (AERI, 3-20 µm) radiometer (SMiR, 19-89GHz) Products: • Cloud Optics/Radiation : zenith downwelling radiance (UV – µwave), linear depolarization, reflectivity profile • Cloud Microphysics : thermodynamic phase, water content, cloud-base/top/height, cloud fraction, Doppler fall- velocity, ice/liquid particle size (non-precipitation)

  9. 7-SEAS/BASELInE Data Products SMARTLabs/AERONET/MPLNET Regional Instrumentation* Organic Carbon (OC): OC 1 (120  C), OC 2 (280  C), Trace Gas – Column : O 3 , NO 2 , SO 2 , HCHO, CO, H 2 O; OC 3 (480  C), OC 4 (580  C), OP (pyrolyzed organic – Surface : CO, CO 2 , O 3 , SO 2 , NO, NOx/NOy; – Profile : NO 2 , (O 3 in progress) carbon, e.g., anhydrosugars, dicarboxylic acids) Elemental Carbon (EC): EC 1 (580  C – OP), EC 2 Aerosol Optical Thickness : multi-spectral from UV to (740  C), EC 3 (840  C) shortwave-IR, dust at longwave-IR, and extinction profile Water soluble ions : Na + , NH 4 + , K + , Mg 2+ , Ca 2+ , Cl - Aerosol Microphysics/Chemistry : size, mass, type, - , SO 4 2- , nss-SO 4 2- , NO 2- , F - CCN, hygroscopicity, scattering/absorption/extinction , NO 3 Cloud Optical Thickness : multi-spectral from visible to Toxic : Mercury, PCDD/Fs (dioxin) longwave-IR Cloud Microphysics : size, liquid-/ice-water content, Metal : Ti, Mn, Co, Ni, Cu, Zn, Mo, Ag, Cd, Sn, Sb, cloud-base/top/height, thermodynamic phase, Doppler Tl, Pb, V, Cr, As, Y, Se, Zr, Nb, Ge, Rb, Cs, Ga, La, fall-velocity, depolarization and reflectivity profiles Ce, Pr, Nd, Sm, Eu, Gd UV radiation: spectral UV (erythemal) irradiance Radiation Flux : surface solar and terrestrial irradiance Meteorology : P, T, RH, wind, mixed-layer height, Supplementary data : sounding profile, sky image, precipitation, visibility particle spectroscopy/morphology, rainfall amount …( aeronet ) …( mplnet )… *nhlin@cc.ncu.edu.tw http://smartlabs.gsfc.nasa.gov

  10. X-band W-band Calibration tower 10 GHz 94 GHz K-band FM-CW pulsed 24 GHz radar radar FM-CW radar All-sky imager Ceilometer 910 nm Atmospheric emitted radiance interferometer (AERI, 3-20 µm) CloudSat W-band reflectivity (a) (b) (c) 6:35 UTC 1 st deployment: 7-SEAS/BASELInE, Spring 2013 At the Yen Bai supersite, ACHIEVE instrument setup for (a) AERONET/Cimel sun-sky spectroradiometer with polarization for cloud-mode operations, (b) the ACHIEVE 6:33 UTC mobile laboratory in action, and (c) a 18.4m high corner- cube (6.4-inch inner dimension) calibration tower, located at the west bank of the Red River, Vietnam, and 370m to ACHIEVE W-band reflectivity the ACHIEVE radars.

  11. 15 2.0 7 April 2013: Yen Bai, Vietnam* 10 Encroachment of stratocumulus deck Height (km) 5 RHI & PPI RHI & PPI RHI & PPI RHI & PPI Reflectivity (dBZ) 1.5 0 -5 -10 1.0 -15 Cloud deck -20 development Drizzle -25 0.5 formation Light precipitation -30 Time (UTC +7=Local ) -35 13:36 14:48 16:00 17:11 18:22 19:35 0.0 -40 10 4 Droplet Concentration (#cm -3 µm -1 ) 14 0 n - 1 Drizzle Formation Rate (#s -1 m -3 ) 0 æ ö æ ö D exp - D GCE with fully prognostic 3M-PSD: simulated W-band radar reflectivity by varying CCNs 1 1 n ( D ) = N t f gam ( D ) = N t 10 2 ç ÷ ç ÷ 12 0 0 D m =10µm G ( n ) 2. è D n ø D n è D n ø 10 0 0 10 Height (km) 0 0 N t =100cm -3 1. 10 -2 narrower  = 1.0 8 5 0 0 n Cloud WC 10 -4  = 2.5 Drizzle WC (10 -3 gm -3 ) 1. n (10 -5 gm -3 ) 6  = 4.0 0 0 0 10 -6 n  = 6.0 (b) CCN: surface(600)  4km(100) cm -3 (a) CCN surface  4km: 100 cm -3 (c) CCN: surface(1500)  4km(100) cm -3 n 4 0. 0 0 10 -8  = 9.0 14 15 16 17 14 15 16 17 5 14 15 16 17 D m =12µm D m =20µm n •  = 14. 2 As CCN increases, cloud droplet sizes decrease, number concentrations increase, cloud 10 -10 0 0 n spectral width water content and integrated LWP increase; drizzle suppressed. 10 -12 0 0 0 0 5 10 15 20 25 30 35 0 0 10 10 20 20 30 30 40 40 0 10 20 30 40 50 • Simulated reflectivity decreases with increasing CCN owing to more numerous smaller Mean Mass Diameter, D m (µm) Droplet Diameter (µm) *Loftus, Tsay, et al., 2016, AAQR, doi:10.4209/aaqr.2015.11.0631 . droplets and suppressed drizzle development.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend