global fits to bs data nazila mahmoudi
play

Global fits to bs data Nazila Mahmoudi Lyon University & CERN - PowerPoint PPT Presentation

Global fits to bs data Nazila Mahmoudi Lyon University & CERN TH In collaboration with T. Hurth and S. Neshatpour Rare B decays in 2015 - experiment and theory Higgs Centre for Theoretical Physics, Edinburgh 11-13 May 2015 b s


  1. Global fits to bs ℓℓ data Nazila Mahmoudi Lyon University & CERN TH In collaboration with T. Hurth and S. Neshatpour Rare B decays in 2015 - experiment and theory Higgs Centre for Theoretical Physics, Edinburgh 11-13 May 2015

  2. b → s transitions Inclusive decays B → X s γ Improved theory calculations (Misiak et al. 1503.01789) Excellent agreement with the measurements B → X s ℓ + ℓ − Still waiting for the final words from Belle and Babar! High expectation from Belle II! Exclusive decays B → K ∗ γ First measurements of B s → µ + µ − Angular distributions of B → K ∗ µ + µ − → large variety of experimentally accessible observables Also: B → K µ + µ − and B s → φµ + µ − Issue of hadronic uncertainties in exclusive modes Nazila Mahmoudi 2 / 20 Rare B decays in 2015 - Edinburgh - 13 May 2015

  3. B → V ℓ + ℓ − – Notations Differential decay distribution: d 4 Γ 9 32 π J ( q 2 , θ ℓ , θ V , φ ) dq 2 d cos θ ℓ d cos θ V d φ = J ( q 2 , θ ℓ , θ V , φ ) = � i J i ( q 2 ) f i ( θ ℓ , θ V , φ ) ց angular coefficients J 1 − 9 ց functions of the spin amplitudes A 0 , A � , A ⊥ , A t , and A S Spin amplitudes: functions of Wilson coefficients and form factors Standard Observables: Dilepton invariant mass spectrum: d Γ dq 2 = 3 J 1 − J 2 � � 4 3 Forward backward asymmetry: � d Γ � d Γ d 2 Γ �� 0 � 1 dq 2 = 3 � A FB ( q 2 ) ≡ − 1 − d cos θ l 8 J 6 dq 2 d cos θ l 0 dq 2 0 ≃ − 2 m b m B C eff 9 ( q 2 0 ) Forward backward asymmetry zero-crossing: q 2 + O ( α s , Λ / m b ) C 7 | A 0 | 2 Polarization fraction: F L ( q 2 ) = | A 0 | 2 + | A � | 2 + | A ⊥ | 2 , Nazila Mahmoudi 3 / 20 Rare B decays in 2015 - Edinburgh - 13 May 2015

  4. B → V µ + µ − observables Optimised observables: form factor uncertainties cancel at leading order bin dq 2 [ J 3 + ¯ bin dq 2 [ J 6 s + ¯ � J 3 ] � J 6 s ] � P 1 � bin = 1 � P 2 � bin = 1 bin dq 2 [ J 2 s + ¯ bin dq 2 [ J 2 s + ¯ 2 � 8 � J 2 s ] J 2 s ] 1 � 1 � dq 2 [ J 4 + ¯ dq 2 [ J 5 + ¯ � P ′ � P ′ 4 � bin = J 4 ] 5 � bin = J 5 ] N ′ 2 N ′ bin bin bin bin − 1 − 1 � � � P ′ dq 2 [ J 7 + ¯ � P ′ dq 2 [ J 8 + ¯ 6 � bin = J 7 ] 8 � bin = J 8 ] 2 N ′ N ′ bin bin bin bin with � bin dq 2 [ J 2 s + ¯ bin dq 2 [ J 2 c + ¯ N ′ � � bin = − J 2 s ] J 2 c ] + CP violating clean observables and other combinations U. Egede et al., JHEP 0811 (2008) 032, JHEP 1010 (2010) 056 J. Matias et al., JHEP 1204 (2012) 104 S. Descotes-Genon et al., JHEP 1305 (2013) 137 Or alternatively: S i = J i ( s , c ) + ¯ J i ( s , c ) dq 2 + d ¯ d Γ Γ dq 2 W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D.M. Straub, M. Wick, JHEP 0901 (2009) 019 Nazila Mahmoudi 4 / 20 Rare B decays in 2015 - Edinburgh - 13 May 2015

  5. The LHCb anomalies 3 main LHCb anomalies: P ′ 5 R K BR( B s → φµ + µ − ) × 10 -6 ] 4 c -2 LHCb [GeV 0.1 2 q )/d − µ + µ 0.05 φ → s B ( B d 0 5 10 15 2 2 4 q [GeV / c ] Possible explanations: Statistical fluctuations Theoretical issues New Physics! Nazila Mahmoudi 5 / 20 Rare B decays in 2015 - Edinburgh - 13 May 2015

  6. New Physics interpretation? Global analysis of the latest LHCb data Relevant O perators: O 7 , O 8 , O ( ′ ) 9 µ, e , O ( ′ ) µ P L µ ) ≡ O l and O S − P ∝ (¯ sP R b )(¯ 0 10 µ, e NP manifests itself in the shifts of the individual coefficients with respect to the SM values: C i ( µ ) = C SM ( µ ) + δ C i i → Scans over the values of δ C i → Calculation of flavour observables → Comparison with experimental results → Constraints on the Wilson coefficients C i Nazila Mahmoudi 6 / 20 Rare B decays in 2015 - Edinburgh - 13 May 2015

  7. Global fits Evaluations uncertainties and correlations: Experimental errors and correlations 3 fb − 1 LHCb data for B → K ∗ 0 µ + µ − : provided in LHCb-CONF-2015-002 Theoretical uncertainties and correlations study of more than 100 observables (at a later stage, selection of the relevant observables for each fit) Monte Carlo analysis variation of the “standard” input parameters: masses, scales, CKM, ... for B s → φµ + µ − , mixing effects taken into account decay constants taken from the latest lattice results use for the B ( s ) → V form factors of the lattice+LCSR combinations from 1503.05534, including correlations (Cholesky decomposition method) use for the B → K form factors of the lattice+LCSR combinations from 1411.3161, including correlations two approaches for the exclusive decays: soft form factors, full form factors two sets of hypotheses for the uncertainties associated to the factorisable and non-factorisable power corrections ⇒ Computation of a (theory + exp) correlation matrix Nazila Mahmoudi 7 / 20 Rare B decays in 2015 - Edinburgh - 13 May 2015

  8. Global fits For the exclusive semi-leptonic decays, two approaches and two evaluations of the uncertainties for each decay. At low q 2 : Soft form factor approach Uncertainties of the factorisable and non-factorisable corrections parametrised as q 2 � � A k → A k 1 + a k exp ( i φ k ) + 6 GeV 2 b k exp ( i θ k ) where A k are the helicity amplitudes. a k in [ − 10 % , + 10 %] or [ − 20 % , + 20 %] φ k , θ k in [ − π, + π ] b k in [ − 25 % , + 25 %] or [ − 50 % , + 50 %] Full form factor approach Uncertainties of the non-factorisable power corrections only parametrised in a similar way: a k in [ − 5 % , + 5 %] or [ − 10 % , + 10 %] φ k , θ k in [ − π, + π ] b k in [ − 10 % , + 10 %] or [ − 25 % , + 25 %] At high q 2 , uncertainties parametrised as A k → A k � 1 + a k exp ( i φ k ) � a k in [ − 10 % , + 10 %] or [ − 20 % , + 20 %] φ k in [ − π, + π ] Nazila Mahmoudi 8 / 20 Rare B decays in 2015 - Edinburgh - 13 May 2015

  9. Global fits Global fits of the observables by minimization of � � � � χ 2 = O th − � · (Σ th + Σ exp ) − 1 · O th − � O exp � O exp � (Σ th + Σ exp ) − 1 is the inverse covariance matrix. 58 observables relevant for leptonic and semileptonic decays: BR( B → X s γ ) BR( B → K 0 µ + µ − ) BR( B → K + µ + µ − ) BR( B → X d γ ) ∆ 0 ( B → K ∗ γ ) BR( B → K ∗ e + e − ) BR low ( B → X s µ + µ − ) R K BR high ( B → X s µ + µ − ) B → K ∗ 0 µ + µ − : F L , A FB , S 3 , BR low ( B → X s e + e − ) S 4 , S 5 in five low q 2 and two high BR high ( B → X s e + e − ) q 2 bins BR( B s → µ + µ − ) B s → φµ + µ − : BR, F L BR( B d → µ + µ − ) in three low q 2 and two high BR( B → K ∗ + µ + µ − ) q 2 bins Nazila Mahmoudi 9 / 20 Rare B decays in 2015 - Edinburgh - 13 May 2015

  10. Global fits Statistical approaches: ∆ χ 2 = χ 2 − χ 2 min method Determination of the minimum of χ 2 → best fit point 1 Computation for each point of the scan of the difference of χ 2 with the best fit point 2 Find the 1 − 2 σ regions corresponding to the number of d.o.f. 3 Interpretation: considering the best fit point gives the “real” description, which variations of the parameters are allowed → relative global fit Absolute χ 2 method Computation of the χ 2 for each point 1 Find the 1 − 2 σ regions corresponding to N d.o.f. where N = ( N o observables - n v 2 variables) If an observable is relatively insensitive to the variation of the Wilson coefficients, 3 remove it from the fit Interpretation: global fit assessing if each point is globally in agreement with all the measurements Nazila Mahmoudi 10 / 20 Rare B decays in 2015 - Edinburgh - 13 May 2015

  11. Fit results for two operators: { C 9 , C 10 } → Using soft form factors with 10% power correction errors: ∆ χ 2 method with 20% power correction errors: ∆ χ 2 method Nazila Mahmoudi 11 / 20 Rare B decays in 2015 - Edinburgh - 13 May 2015

  12. Fit results for two operators: { C 9 , C 10 } → Using soft form factors with 10% power correction errors: ∆ χ 2 method Absolute χ 2 method with 20% power correction errors: ∆ χ 2 method Absolute χ 2 method 1 σ agreement for C 9 is possible even in the 2 operator basis! Nazila Mahmoudi 11 / 20 Rare B decays in 2015 - Edinburgh - 13 May 2015

  13. Fit results for two operators: { C 9 , C 10 } → Using full form factors with 5% power correction errors: ∆ χ 2 method with 10% power correction errors: ∆ χ 2 method Nazila Mahmoudi 11 / 20 Rare B decays in 2015 - Edinburgh - 13 May 2015

  14. Fit results for two operators: { C 9 , C 10 } → Using full form factors with 5% power correction errors: ∆ χ 2 method Absolute χ 2 method with 10% power correction errors: ∆ χ 2 method Absolute χ 2 method Using the full form factors, only 2 σ agreement for C 9 could be possible. Nazila Mahmoudi 11 / 20 Rare B decays in 2015 - Edinburgh - 13 May 2015

  15. Fit results for two operators: { C 9 , C ′ 9 } → Using soft form factors with 10% power correction errors: ∆ χ 2 method with 20% power correction errors: ∆ χ 2 method Nazila Mahmoudi 12 / 20 Rare B decays in 2015 - Edinburgh - 13 May 2015

  16. Fit results for two operators: { C 9 , C ′ 9 } → Using soft form factors with 10% power correction errors: ∆ χ 2 method Absolute χ 2 method with 20% power correction errors: ∆ χ 2 method Absolute χ 2 method 1 σ agreement for C 9 is possible even in the 2 operator basis! Nazila Mahmoudi 12 / 20 Rare B decays in 2015 - Edinburgh - 13 May 2015

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend