global fits to mssm models
play

Global Fits to MSSM Models by Ben Allanach (University of - PowerPoint PPT Presentation

Global Fits to MSSM Models by Ben Allanach (University of Cambridge) Talk outline a LHC SUSY Searches SUSY fits to Indirect Data Effect of Searches Please ask questions while Im talking a BCA, arXiv:1102.3149 ; BCA, Khoo, Lester,


  1. Global Fits to MSSM Models by Ben Allanach (University of Cambridge) Talk outline a • LHC SUSY Searches • SUSY fits to Indirect Data • Effect of Searches Please ask questions while I’m talking a BCA, arXiv:1102.3149 ; BCA, Khoo, Lester, Williams, arXiv:1103.0969 Global Fits to MSSM Models B.C. Allanach – p. 1

  2. Supersymmetric Copies H Global Fits to MSSM Models B.C. Allanach – p. 2

  3. Supersymmetric Copies ˜ H × 2 H × 2 Global Fits to MSSM Models B.C. Allanach – p. 2

  4. Electroweak Breaking Both Higgs get vacuum expectation values: � H 0 � v 1 � H + � 0 � � � � 1 2 → → H − H 0 0 v 2 2 1 and to get M W correct, match with v SM = 246 GeV: v SM tan β = v 2 v 2 v 1 v 1 β 2 t R + h b ¯ L = h t ¯ t L H 0 b L H 0 τ L H 0 1 b R + h τ ¯ 1 τ R ⇒ m t = h t v SM cos β = h b,τ v SM m b,τ √ 2 , √ . sin β 2 Global Fits to MSSM Models B.C. Allanach – p. 3

  5. CMS α T Search CMS: jets and missing energy arXiv:1101.1628 L = 35 pb − 1 . H T = � N jet i =1 | p j i T | > 350 GeV . � | p j i � | p j i (1) ∆ H T ≡ T | − T | . j i ∈ A j i ∈ B One then calculates α T = H T − ∆ H T (2) > 0 . 55 � / 2 H 2 2 T − H T � ( � N jet x ) 2 + ( � N jet i =1 p j i i =1 p j i y ) 2 . where H / T = Global Fits to MSSM Models B.C. Allanach – p. 4

  6. Results Global Fits to MSSM Models B.C. Allanach – p. 5

  7. ATLAS 0-lepton, jets and / p T m eff = � p ( j ) T + p / T , 2 ( p T ( i ) , / � − 2 p T ( i ) · / m ( i ) � p T ( i ) � � � � ( i ) � ( i ) ) ≡ 2 ( i ) � / q T q T q T T ( i ) is the transverse momentum of particle where / q T ( i ) . For each event, it is a lower bound on m ( NLSP ) . � � �� m (1) T , m (2) (1) , p T (2) , / M T 2 ( p T p T ) ≡ min � max q T = / / T p T Global Fits to MSSM Models B.C. Allanach – p. 6

  8. Candidate Event: High E T ( j ) Global Fits to MSSM Models B.C. Allanach – p. 7

  9. MSSM Exclusion: Simplified Model 2000 squark mass [GeV] ATLAS int -1 L = 35 pb , s =7 TeV 0 lepton combined exclusion 0 lepton combined exclusion 1750 Observed 95% CL limit Median expected limit 1500 ± σ Expected limit 1 ~ LEP 2 q FNAL MSUGRA/CMSSM, Run I 1250 D0 MSUGRA/CMSSM, Run II CDF MSUGRA/CMSSM, Run II 1000 σ = 0.1 pb SUSY 750 σ = 1 pb SUSY 500 σ = 10 pb SUSY 250 0 0 250 500 750 1000 1250 1500 1750 2000 ∼ gluino mass [GeV] χ 0 Squark-gluino-neutralino model (massless ) 1 Global Fits to MSSM Models B.C. Allanach – p. 7

  10. SUSY Dark Matter astro-ph/0608407 χ 0 p 1 σ p ′ χ 0 1 Global Fits to MSSM Models B.C. Allanach – p. 8

  11. SUSY Prediction of Ω h 2 • Assume relic in thermal equilibrium with n eq ∝ ( MT ) 3 / 2 exp ( − M/T ) . • Freeze-out with T f ∼ M f / 25 once interaction rate < expansion rate ( t eq critical) • microMEGAs uses calcHEP to automatically calculate relevant Feynman diagrams for some given model Lagrangian: flexible . • darkSUSY , IsaRED has MSSM annihilation channels hard-coded. • Both darkSUSY and micrOMEGAs calculate (in-)direct predictions. Global Fits to MSSM Models B.C. Allanach – p. 9

  12. WMAP+BAO+Ia Fits Global Fits to MSSM Models B.C. Allanach – p. 10

  13. WMAP+BAO+Ia Fits Ω DM h 2 = 0 . 1143 ± 0 . 0034 Power law Λ CDM fit Global Fits to MSSM Models B.C. Allanach – p. 10

  14. Universality Reduces number of SUSY breaking parameters from 100 to 3: • tan β ≡ v 2 /v 1 • m 0 , the common scalar mass (flavour). • M 1 / 2 , the common gaugino mass (GUT/string). • A 0 , the common trilinear coupling (flavour). These conditions should be imposed at M X ∼ O (10 16 − 18 ) GeV and receive radiative corrections ∝ 1 / (16 π 2 ) ln( M X /M Z ) . Also, Higgs potential parameter sgn( µ )= ± 1. Global Fits to MSSM Models B.C. Allanach – p. 11

  15. Implementation We use • 95 % C.L. direct search constraints • Ω DM h 2 = 0 . 1143 ± 0 . 02 Boudjema et al • δ ( g − 2) µ / 2 = (29 . 5 ± 8 . 8) × 10 − 10 Stöckinger et al • B − physics observables including BR [ b → sγ ] E γ > 1 . 6 GeV = (3 . 52 ± 0 . 38) × 10 − 4 • Electroweak data W Hollik, A Weber et al ( p i − e i ) 2 � � χ 2 2 ln L = − i + c = + c σ 2 i i i Global Fits to MSSM Models B.C. Allanach – p. 12

  16. Additional observables � 2 � 100 GeV δ ( g − 2) µ ∼ 13 × 10 − 10 tan β 2 M SUSY χ ± γ µ ˜ γ i χ 0 µ µ µ µ ν ˜ 1 BR [ b → sγ ] ∝ tan β ( M W /M SUSY ) 2 χ ± γ γ H ± i ˜ t i b s b t s Global Fits to MSSM Models B.C. Allanach – p. 13

  17. mSUGRA Global Fits There are 3 methodologies of doing these type of global fits: • Markov Chain Monte Carlo: BCA et al ; Ruiz de Austri et al : primary interpretation is Bayesian . • MultiNest: Ruiz de Austri et al : Bayesian interpretation only. • Minimising χ 2 /Profile likelihood: Buchmueller et al . Impressive array of electroweak observables. Moving to a hybrid approach. Frequentist interpretation only. Global Fits to MSSM Models B.C. Allanach – p. 14

  18. Application of Bayes’ L ≡ p ( d | m, H ) is pdf of reproducing data d assuming pMSSM hypothesis H and model parameters m p ( m | d, H ) = p ( d | m, H ) p ( m, H ) p ( d, H ) p ( m | d, H ) is called the posterior pdf. We will compare p ( m, H ) = c with a different prior. � p ( m 0 , M 1 / 2 | d, H ) = do p ( m 0 , M 1 / 2 , o | d, H ) Called marginalisation . Global Fits to MSSM Models B.C. Allanach – p. 15

  19. Log Fits B.C. Allanach, Feb 2011 B.C. Allanach, Feb 2011 0.4 1 1 60 0.35 0.8 50 0.8 0.3 40 m 0 (TeV) 0.6 0.6 0.25 tan β 30 0.2 0.4 0.4 20 0.15 0.2 0.2 0.1 10 0.05 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 m 1/2 (TeV) m 1/2 /TeV Choose priors on SM parameters set from data. Priors on SUSY parameters up to 4 TeV: flat in tan β , A 0 , ln( m 0 ) , ln( m 1 / 2 ) . Global Fits to MSSM Models B.C. Allanach – p. 16

  20. Killer Inference for Susy METeorology BCA, Cranmer, Weber, Lester, arXiv:0705.0487 BCA, Cranmer, Weber, Lester, arXiv:0705.0487 http://users.hepforge.org/ ˜ allanach/benchmarks/kismet.html P/P(max) P/P(max) 4 4 1 1 0.9 3.5 3.5 flat tan β 0.8 0.8 3 3 0.7 m 0 (TeV) 2.5 m 0 (TeV) 2.5 0.6 0.6 2 2 0.5 1.5 1.5 0.4 0.4 flat µ, B 1 1 0.3 0.5 0.5 0.2 0.2 0 0 0.1 0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0 M 1/2 (TeV) M 1/2 (TeV) 100 fb -1 300 fb -1 L = 1 fb -1 10 fb -1 2000 m 0 ( GeV) CMS tan β = 35 1800 1600 ~ ~ g g ( 2 0 ( 3 0 ~ 0 0 ) 0 0 ) g ( 1 0 1400 0 0 ) ~ ~ g ( g ( 1 5 0 2 5 0 1200 0 ) 0 ) b → s γ limit 1000 800 q ~ (2500) q ~ (2000) 600 ~ (1500) q q ~ (1000) 400 M h limit 200 Charged LSP 0 0 375 750 1125 1500 Global Fits to MSSM Models B.C. Allanach – p. 17 m 1/2 (GeV)

  21. Killer Inference for Susy METeorology BCA, Cranmer, Weber, Lester, arXiv:0705.0487 Bayesian 1 Bayesian 2 100 fb -1 300 fb -1 L = 1 fb -1 10 fb -1 2000 m 0 ( GeV) CMS tan β = 35 1800 1600 ~ ~ g g ( 2 0 ( 3 0 ~ 0 0 ) 0 0 ) g ( 1 0 1400 0 0 ) ~ ~ g ( g ( 1 5 0 2 5 0 1200 0 ) 0 ) b → s γ limit 1000 800 q ~ (2500) q ~ (2000) 600 ~ (1500) q q ~ (1000) 400 M h limit 200 Charged LSP 0 0 375 750 1125 1500 Global Fits to MSSM Models B.C. Allanach – p. 18 m 1/2 (GeV)

  22. Collider SUSY Dark Matter Production Strong sparticle production and decay to dark matter particles. q q q q p p 7 TeV 7 TeV q,g q,g Interaction ~ ~ q q q q χ 0 χ 0 1 1 Any (light enough) dark matter candidate that couples to hadrons can be produced at the LHC Global Fits to MSSM Models B.C. Allanach – p. 19

  23. Validation of CMS Analysis Used SOFTSUSY3.1.7 , Herwig++-2.4.2 and fastjet-2.4.2 to simulate 10000 signal events α T distributions with H T > 350 GeV: α T distributions for SUSY point LM0 m 0 = 200 , m 1 / 2 = 160 , A 0 = − 400 , tan β = 10 by my simulation (solid) and CMS’ (dashed). Global Fits to MSSM Models B.C. Allanach – p. 20

  24. CMS Validation II tan β = 3 tan β = 30 ∆ χ 2 approx tan β , A 0 independent ⇒ interpolate it across m 0 and m 1 / 2 , then re-weight fit with ∆ χ 2 . Global Fits to MSSM Models B.C. Allanach – p. 21

  25. CMS Weighted Fits B.C. Allanach, Feb 2011 B.C. Allanach, Feb 2011 0.4 1 0.4 1 0.35 0.35 0.8 0.8 0.3 0.3 m 0 (TeV) m 0 (TeV) 0.6 0.6 0.25 0.25 0.2 0.2 0.4 0.4 0.15 0.15 0.2 0.2 0.1 0.1 0.05 0 0.05 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 m 1/2 (TeV) m 1/2 (TeV) Global Fits to MSSM Models B.C. Allanach – p. 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend