the mssm interactions of particles and sparticles
play

The MSSM interactions of particles and sparticles The field content - PowerPoint PPT Presentation

The MSSM interactions of particles and sparticles The field content of the MSSM bosons fermions SU (3) C SU (2) L U (1) Y u L , 1 Q i ( d L ) i ( u L , d L ) i 6 u i = u u 2 u i 1 Ri Ri 3 d i = d d 1


  1. The MSSM

  2. interactions of particles and sparticles The field content of the MSSM bosons fermions SU (3) C SU (2) L U (1) Y u L , � 1 Q i ( � d L ) i ( u L , d L ) i 6 u i = u † u ∗ − 2 u i � 1 Ri Ri 3 � d i = d † d ∗ 1 d i 1 Ri Ri 3 − 1 L i ( � ν, � e L ) i ( ν, e L ) i 1 2 e i = e † e ∗ e i � 1 1 1 Ri Ri ( � u , � 1 ( H + u , H 0 H + H 0 H u u ) u ) 1 2 ( � d , � d , H − H − − 1 ( H 0 H 0 H d d ) d ) 1 2 � G a G a G 0 Ad 1 µ W 3 , � � W 3 µ , W ± W ± W 0 1 Ad µ � B B µ B 0 1 1

  3. interactions of particles and sparticles SM has three generations, i is a generation label u i = ( u, c, t ) , d i = ( d, s, b ) , ν i = ( ν e , ν µ , ν τ ) , e i = ( e, µ, τ ) . Higgs VEV breaks SU (2) L × U (1) Y → U (1) Q = T 3 L + Y 1 1 1 e 2 = g 2 + g ′ 2 .

  4. Two Higgs Doublets Two Higgs doublets with opposite hypercharges are needed to cancel the U (1) 3 Y and U (1) Y SU (2) 2 L anomalies from higgsinos even number of fermion doublets to avoid the Witten anomaly for SU (2) L . The superpotential for the Higgs : W Higgs = u Y u QH u − d Y d QH d − e Y e LH d + µH u H d . In the SM we can have Yukawa couplings with H or H ∗ but holomorphy requires both H u and H d in order to write Yukawa couplings for both u and d

  5. Yukawa Couplings m t ≫ m c , m u ; m b ≫ m s , m d ; m τ ≫ m µ , m e ,       0 0 0 0 0 0 0 0 0   , Y d ≈   , Y e ≈   Y u ≈ 0 0 0 0 0 0 0 0 0 0 0 y t 0 0 y b 0 0 y τ u ) − y b ( btH − y t ( ttH 0 u − tbH + d − bbH 0 W Higgs = d ) − y τ ( τν τ H − u H − d − ττH 0 d ) + µ ( H + d − H 0 u H 0 d ) . ~ t R * t R t R 0 0 0 H u H u H u ~ t L t L t L ~ ~ F * t R t R * t R 0 0 F H u H u H u ~ ~ t L F t L t L

  6. µ -term gives a mass to the higgsinos and a mixing term between a Higgs and the auxiliary F field of the other Higgs. Integrating out auxiliary fields yields the Higgs mass terms and the cubic scalar interactions ~ ~ 0 0 0 (b) (a) F H d H H u d H u ~ * t 0 0 0 (d) (c) H d H d R H d ~ t L

  7. Higgs mass terms − µ ( � u � d − � u � H − H + H 0 H 0 L µ, quadratic = d ) + h.c. u | 2 + | H + u | 2 + | H 0 d | 2 + | H − −| µ | 2 ( | H 0 d | 2 ) . The D -term potential adds quartic terms with positive curvature, so there is a stable minimum at the origin with � H u � = � H d � = 0. EWSB requires soft SUSY breaking terms. without unnatural cancellations we will need µ ∼ O ( m soft ) ∼ O ( M W ) rather than O ( M Pl ). This is known as the µ -problem. perhaps µ is forbidden at tree-level so µ is then determined by the SUSY breaking mechanism which also determines m soft .

  8. cubic scalar After integrating out auxiliary fields, µ ∗ � d + � R Y d � u ∗ u L H 0 ∗ d ∗ d L H 0 ∗ e ∗ e L H 0 ∗ L µ, cubic = � R Y u � u + � R Y e � u � R Y u � + � d L H −∗ u ∗ d ∗ u L H + ∗ e ∗ ν L H + ∗ + � R Y d � + � R Y e � + h.c. u u d The quartic scalar interactions are obtained in a similar fashion. other holomorphic renormalizable terms : W disaster = α ijk Q i L j d k + β ijk L i L j e k + γ i L i H u + δ ijk d i d j u k , W disaster violates lepton and baryon number!

  9. Rapid Proton Decay _ + µ + ) ( , , ( , ) L e ν ν d ~ ~ e µ s R , b R p + _ Q u + + 0 ( 0 ) ( ) π , π , , K K _ _ u u m 5 | αδ | 2 p Γ p ≈ 8 π , m 4 q ˜ � � 4 2 × 10 − 11 s . m ˜ 1 1 τ p = Γ ≈ q | αδ | 2 1 TeV

  10. Super Kamiokande

  11. Super Kamiokande

  12. Rapid Proton Decay � � 4 2 × 10 − 11 s m ˜ 1 1 q τ p = Γ ≈ | αδ | 2 1 TeV Experimentally, τ p > 10 32 years ≈ 3 × 10 39 s need | αδ | < 10 − 25

  13. R-Parity invent a new discrete symmetry called R -parity: (observed particle) → (observed particle) , (superpartner) → − (superpartner) . Imposing this discrete R -parity forbids W disaster R -parity ≡ to imposing a discrete subgroup of B − L (“matter parity”) P M = ( − 1) 3( B − L ) since R = ( − 1) 3( B − L )+ F R -parity is part of the definition of the MSSM

  14. R-Parity R -parity has important consequences: • at colliders superpartners are produced in pairs; • the lightest superpartner (LSP) is stable, and thus (if it is neutral) can be a dark matter candidate; • each sparticle (besides the LSP) eventually decays into an odd number of LSPs.

  15. R-Parity ¯ b ¯ ˜ b 1 χ 0 ˜ 1 g g ˜ b g ¯ b g ˜ χ 0 ˜ g 1 ˜ b 1 b

  16. Soft SUSY Breaking � � M 3 � G � G + M 2 � W � W + M 1 � B � − 1 L MSSM = B + h.c. soft 2 � � QH u − � u A u � d A d � e A e � � QH d − � − LH d + h.c. ∗ ∗ m 2 u − � � ∗ m 2 − � Q � Q − � L � L − � u � d − � e � Q ∗ m 2 L ∗ m 2 m 2 u d e e d − m 2 H u H ∗ u H u − m 2 H d H ∗ d H d − ( bH u H d + h.c. ) . to m soft ≈ 1 TeV in order to solve the hierarchy problem by canceling quadratic divergences: f , b ∼ m 2 M i , A f ∼ m soft , m 2 soft . 105 more parameters than the SM!

  17. Electroweak symmetry breaking D -term potentials for the Higgs fields. The SU (2) L and U (1) Y D - terms are (with other scalars set to zero) D a | Higgs − g ( H ∗ u τ a H u + H ∗ d τ a H d ) , = � d | 2 � − g ′ u | 2 + | H 0 u | 2 − | H 0 d | 2 − | H − D ′ | Higgs | H + = 2 g ′ = e e e e g = sin θ W = s W , cos θ W = c W ( | µ | 2 + m 2 u | 2 + | H + H u )( | H 0 u | 2 ) V ( H u , H d ) = +( | µ | 2 + m 2 d | 2 + | H − H d )( | H 0 d | 2 ) u H − d ) + h.c. + 1 u H −∗ + b ( H + d − H 0 u H 0 2 g 2 | H + u H 0 ∗ d + H 0 d | 2 8 ( g 2 + g ′ 2 )( | H 0 u | 2 + | H + u | 2 − | H 0 d | 2 − | H − + 1 d | 2 ) 2

  18. Electroweak symmetry breaking SU (2) L gauge transformation can set � H + u � = 0. If we look for a stable minimum along the charged directions we find d + g 2 u � =0 = bH − d H − ∂V 2 H 0 ∗ d H 0 ∗ u | � H + u ∂H + will not vanish for nonzero H − d for generic values of the parameters. ( | µ | 2 + m 2 u | 2 + ( | µ | 2 + m 2 d | 2 − ( b H 0 V ( H 0 u , H 0 H u ) | H 0 H d ) | H 0 u H 0 d ) = d + h.c. ) 8 ( g 2 + g ′ 2 )( | H 0 u | 2 − | H 0 + 1 d | 2 ) 2 . origin is not a stable minimum requires: b 2 > ( | µ | 2 + m 2 H u )( | µ | 2 + m 2 H d ) . stabilizing D -flat direction H 0 u = H 0 d where the b term is arbitrarily negative requires 2 b < 2 | µ | 2 + m 2 H u + m 2 H d .

  19. Electroweak symmetry breaking tight relation between b and µ there is no solution if m 2 H u = m 2 H d . Typically, choose m 2 H u and m 2 H d to have opposite signs and different magnitudes b /m H d 3 2 2 2.5 2 1.5 1 0.5 0.5 1 1.5 2 2.5 3 2 2 | µ | /m H d Figure 1: Above the top line the Higgs VEVs go to ∞ , while below the bottom line the Higgs VEVs go to zero.

  20. Electroweak symmetry breaking u � = v u � H 0 2 , √ d � = v d � H 0 2 . √ VEVs produce masses for the W and Z 4 g 2 v 2 , W = 1 M 2 4 ( g 2 + g ′ 2 ) v 2 , Z = 1 M 2 where we need to have v 2 = v 2 d ≈ (246 GeV) 2 , u + v 2 define an angle β : s β ≡ sin β ≡ v u v , c β ≡ cos β ≡ v d v , with 0 < β < π/ 2. From this definition it follows that tan β = v u /v d , v 2 d − v 2 cos 2 β = . u v 2

  21. Electroweak symmetry breaking imposing ∂V/∂H 0 u = ∂V/∂H 0 d = 0 gives | µ | 2 + m 2 b cot β + ( M 2 = Z / 2) cos 2 β . H u | µ | 2 + m 2 b tan β − ( M 2 = Z / 2) cos 2 β , H d this is another way of seeing the µ -problem. Higgs scalar fields consist of eight real scalar degrees of freedom. three are eaten by the Z 0 and W ± . This leaves five degrees of freedom: H ± , the h 0 and H 0 which are CP even and the A 0 is CP odd. shift the fields by their VEVs: u → v u H 0 2 + H 0 u , √ d → v d H 0 2 + H 0 d , √

  22. Higgs spectrum � b cot β � � Im H 0 � b V ⊃ (Im H 0 u , Im H 0 u d ) . Im H 0 b b tan β d Diagonalizing, we find the two mass eigenstates: � � � � � � √ π 0 Im H 0 s β − c β u = 2 . A 0 Im H 0 c β s β d would-be Nambu–Goldstone boson π 0 is massless b m 2 A = s β c β .

  23. Higgs spectrum � b cot β + M 2 � � H + � W c 2 b + M 2 W c β s β u , H − V ⊃ ( H + ∗ β u d ) , H −∗ b + M 2 b tan β + M 2 W s 2 W c β s β β d mass eigenstates � � � � � � π + H + s β − c β u = , H −∗ H + c β s β d where π − = π + ∗ and H − = H + ∗ . m 2 m 2 A + M 2 H ± = W .

  24. Higgs spectrum � b cot β + M 2 � � Re H 0 � Z s 2 − b − M 2 Z c β s β ) V ⊃ (Re H 0 u , Re H 0 β u d ) , − b − M 2 b tan β + M 2 Z c 2 Re H 0 Z c β s β ) β d mass eigenstates � � � � � � √ h 0 Re H 0 cos α − sin α u = 2 , H 0 Re H 0 sin α cos α d with masses � � � Z ) 2 − 4 M 2 A cos 2 2 β m 2 1 m 2 A + M 2 ( m 2 A + M 2 Z m 2 = Z ∓ , h,H 2 and the mixing angle α is determined given by sin 2 β = − m 2 A + m 2 cos 2 β = − m 2 A − m 2 sin 2 α cos 2 α h , h . Z Z m 2 H − m 2 m 2 H − m 2 By convention, h 0 corresponds to the lighter mass eigenstate

  25. Higgs spectrum Carena, Haber, hep-ph/0208209

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend