lhc higgs cross section wg branching ratios mssm
play

LHC Higgs Cross Section WG: Branching Ratios MSSM Sven Heinemeyer, - PowerPoint PPT Presentation

LHC Higgs Cross Section WG: Branching Ratios MSSM Sven Heinemeyer, IFCA (CSIC, Santander) Freiburg, 04/2010 co-contacts: Ansgar Denner, Ivica Puljak, Daniela Rebuzzi 1. Introduction 2. MSSM issues 3. What has been done (few) 4. What has


  1. LHC Higgs Cross Section WG: Branching Ratios – MSSM Sven Heinemeyer, IFCA (CSIC, Santander) Freiburg, 04/2010 co-contacts: Ansgar Denner, Ivica Puljak, Daniela Rebuzzi 1. Introduction 2. MSSM issues 3. What has been done (few) 4. What has to be done (a lot) 5. Discussion points / future plans Sven Heinemeyer, LHC-Higgs-XS inauguration workshop, Freiburg, 13.04.2010 1

  2. 1. Introduction Supersymmetry (SUSY) : Symmetry between Bosons ↔ Fermions Q | Fermion � → | Boson � Q | Boson � → | Fermion � Simplified examples: | scalar top , ˜ Q | top , t � → t � Q | gluon , g � → | gluino , ˜ g � ⇒ each SM multiplet is enlarged to its double size Unbroken SUSY: All particles in a multiplet have the same mass Reality: m e � = m ˜ e ⇒ SUSY is broken . . . . . . via soft SUSY-breaking terms in the Lagrangian (added by hand) SUSY particles are made heavy: M SUSY = O (1 TeV) Sven Heinemeyer, LHC-Higgs-XS inauguration workshop, Freiburg, 13.04.2010 2

  3. The Minimal Supersymmetric Standard Model (MSSM) Superpartners for Standard Model particles � � � � � � Spin 1 u, d, c, s, t, b e, µ, τ ν e,µ,τ 2 L,R L,R L � � � � � � u, ˜ t, ˜ s, ˜ ˜ d, ˜ c, ˜ b ˜ e, ˜ µ, ˜ τ ν e,µ,τ ˜ Spin 0 L,R L,R L W ± , H ± γ, Z, H 0 1 , H 0 g Spin 1 / Spin 0 2 � �� � � �� � Spin 1 χ ± χ 0 ˜ ˜ ˜ g 1 , 2 1 , 2 , 3 , 4 2 Enlarged Higgs sector: Two Higgs doublets ⇐ focus here! Problem in the MSSM: many scales Problem in the MSSM: complex phases Sven Heinemeyer, LHC-Higgs-XS inauguration workshop, Freiburg, 13.04.2010 3

  4. Enlarged Higgs sector: Two Higgs doublets √      H 1  v 1 + ( φ 1 + iχ 1 ) / 2 1  = = H 1  φ − H 2 1 1     φ +  H 1 2 2  = = H 2 √   H 2 v 2 + ( φ 2 + iχ 2 ) / 2 2 m 2 H 1 + m 2 H 2 − m 2 12 ( ǫ ab H a 1 H b 1 H 1 ¯ 2 H 2 ¯ V = 2 + h.c.) + g ′ 2 + g 2 H 2 ) 2 + g 2 H 2 | 2 ( H 1 ¯ H 1 − H 2 ¯ | H 1 ¯ 8 2 � �� � ���� gauge couplings, in contrast to SM physical states: h 0 , H 0 , A 0 , H ± Goldstone bosons: G 0 , G ± Input parameters: (to be determined experimentally) tan β = v 2 M 2 A = − m 2 , 12 (tan β + cot β ) v 1 Sven Heinemeyer, LHC-Higgs-XS inauguration workshop, Freiburg, 13.04.2010 4

  5. Enlarged Higgs sector: Two Higgs doublets with CP violation √      H 1  v 1 + ( φ 1 + iχ 1 ) / 2 1  = = H 1  φ − H 2 1 1     φ +  H 1 2 2  e iξ  = = H 2 √  H 2 v 2 + ( φ 2 + iχ 2 ) / 2 2 m 2 H 1 + m 2 H 2 − m 2 12 ( ǫ ab H a 1 H b 1 H 1 ¯ 2 H 2 ¯ V = 2 + h.c.) + g ′ 2 + g 2 H 2 ) 2 + g 2 H 2 | 2 ( H 1 ¯ H 1 − H 2 ¯ | H 1 ¯ 8 2 � �� � ���� gauge couplings, in contrast to SM physical states: h 0 , H 0 , A 0 , H ± 2 CP -violating phases: ξ , arg( m 12 ) ⇒ can be set/rotated to zero Input parameters: (to be determined experimentally) tan β = v 2 M 2 , H ± v 1 Sven Heinemeyer, LHC-Higgs-XS inauguration workshop, Freiburg, 13.04.2010 5

  6. t/ ˜ ˜ b sector of the MSSM: (scalar partner of the top/bottom quark) Stop, sbottom mass matrices ( X t = A t − µ ∗ / tan β , X b = A b − µ ∗ tan β ):     M 2 t L + m 2 m t X ∗ m 2 t + DT t 1 0 θ ˜ t ˜ ˜ M 2 t 1 t     t = − → ˜     M 2 t R + m 2 m 2 m t X t t + DT t 2 0 ˜ ˜ t 2     M 2 b L + m 2 m b X ∗ m 2 b + DT b 1 0 θ ˜ ˜ b ˜ M 2 b 1 b b =     − → ˜     M 2 b R + m 2 m 2 m b X b b + DT b 2 0 ˜ ˜ b 2 mixing important in stop sector (also in sbottom sector for large tan β ) t/ ˜ soft SUSY-breaking parameters A t , A b also appear in φ -˜ b couplings SU (2) relation ⇒ M ˜ t L = M ˜ b L ⇒ relation between m ˜ t 1 , m ˜ t 2 , θ ˜ t , m ˜ b 1 , m ˜ b 2 , θ ˜ b Sven Heinemeyer, LHC-Higgs-XS inauguration workshop, Freiburg, 13.04.2010 6

  7. The BR subgroup: contacts: Ansgar Denner, S.H., Ivica Puljak, Daniela Rebuzzi other members/contributors: Michael Spira, Georg Weiglein (and as ‘everywhere’: Chiara Mariotti, Reisaburo Tanaka) MSSM part: strong overlap with MSSM subgroup ⇒ more MSSM experimentalists needed! ⇒ more MSSM theorists needed? Sven Heinemeyer, LHC-Higgs-XS inauguration workshop, Freiburg, 13.04.2010 7

  8. 2. MSSM issues: Example: h → γγ : γ γ t W + + . . . H t H W t W γ γ SM: input: − SM Higgs mass (free parameter) − SM (fermion) masses − SM couplings (at the appropriate scale) output: − SM amplitude, branching ratio Sven Heinemeyer, LHC-Higgs-XS inauguration workshop, Freiburg, 13.04.2010 8

  9. Now for the MSSM: Input parameters: M A and tan β ⇒ all other masses and mixing angles are predicted! Tree-level result for m h , m H : m 2 H,h = � � 1 � A cos 2 2 β Z ) 2 − 4 M 2 M 2 A + M 2 ( M 2 A + M 2 Z M 2 Z ± 2 ⇒ m h ≤ M Z at tree level Huge higher-order corrections: [ G. Degrassi, S.H., W. Hollik, P. Slavich, G. Weiglein ’02 ] M h < ∼ 135 GeV ⇒ (most) Higgs masses and couplings are not free parameters Sven Heinemeyer, LHC-Higgs-XS inauguration workshop, Freiburg, 13.04.2010 9

  10. Propagator/Mass matrix at tree-level:   q 2 − m 2 0 0 A     q 2 − m 2 0 0   H     q 2 − m 2 0 0 h Propagator / mass matrix with higher-order corrections ( → Feynman-diagrammatic approach):   q 2 − m 2 A + ˆ Σ AA ( q 2 ) Σ AH ( q 2 ) ˆ Σ Ah ( q 2 ) ˆ       q 2 − m 2 M 2 hHA ( q 2 ) =   Σ HA ( q 2 ) ˆ H + ˆ Σ HH ( q 2 ) Σ Hh ( q 2 ) ˆ         q 2 − m 2 ˆ ˆ h + ˆ Σ hA ( q 2 ) Σ hH ( q 2 ) Σ hh ( q 2 ) Σ ij ( q 2 ) ( i, j = h, H, A ) : renormalized Higgs self-energies ˆ Σ Ah , ˆ ˆ Σ AH � = 0 ⇒ CP V, CP -even and CP -odd fields can mix h i ( i = 1 , 2 , 3) : M 2 = M 2 − iM Γ complex roots of det( M 2 hHA ( q 2 )): M 2 Sven Heinemeyer, LHC-Higgs-XS inauguration workshop, Freiburg, 13.04.2010 10

  11. Higgs couplings, tree level: sin( β − α ) g SM V = W ± , Z = g hV V HV V , cos( β − α ) g SM g HV V = HV V g ′ g hAZ = cos( β − α ) 2 cos θ W − sin α cos β g SM g hb ¯ b , g hτ + τ − = Hb ¯ b,Hτ + τ − cos α sin β g SM g ht ¯ = t Ht ¯ t γ 5 tan β g SM = g Ab ¯ b , g Aτ + τ − Hb ¯ b ⇒ g hb ¯ b , g hτ + τ − : significant suppression or enhancement w.r.t. SM coupling possible ⇒ also here: large higher-order corrections! Sven Heinemeyer, LHC-Higgs-XS inauguration workshop, Freiburg, 13.04.2010 11

  12. Important higher-order corrections in the MSSM: ∆ b Additional enhancement factors compared to the SM case: b tan β y b → y b A 1 + ∆ b ¯ b At large tan β : either H ≈ A or h ≈ A t tan β y b H + 1 + ∆ b ¯ b 2 α s ∆ b = g µ tan β × I ( m ˜ g ) 3 π m ˜ b 1 , m ˜ b 2 , m ˜ α t + 4 π A t µ tan β × I ( m ˜ t 1 , m ˜ t 2 , µ ) ⇒ other parameters enter ⇒ strong µ dependence Sven Heinemeyer, LHC-Higgs-XS inauguration workshop, Freiburg, 13.04.2010 12

  13. b → H/A → τ + τ − → 2 jets on µ : Dependence of LHC wedge from b ¯ [ S.H., A. Nikitenko, G. Weiglein et al. ’06 ] β β 2 2 = -1000 GeV/c = -1000 GeV/c µ µ tan tan 50 50 2 2 µ = -200 GeV/c µ = -200 GeV/c 2 2 = 200 GeV/c = 200 GeV/c µ µ 40 40 2 2 = 1000 GeV/c = 1000 GeV/c µ µ 30 30 -1 -1 CMS, 60 fb CMS, 60 fb pp bb j+j pp bb j+j → φ → τ τ → → φ → τ τ → 20 20 m scenario max no mixing scenario h 2 2 M = 2 TeV/c M = 1 TeV/c SUSY SUSY 2 2 M = 200 GeV/c M = 200 GeV/c 10 10 2 2 m = 0.8 M m = 0.8 M SUSY SUSY gluino gluino Stop mix: X = 2 M Stop mix: X = 0 t SUSY t 100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800 2 2 M ,GeV/c M ,GeV/c A A ⇒ non-negligible variation with the sign and absolute value of µ (despite numerical compensations in production and decay) Sven Heinemeyer, LHC-Higgs-XS inauguration workshop, Freiburg, 13.04.2010 13

  14. Another issue: external (on-shell) Higgs bosons Examples for external (on-shell) Higgs bosons ( φ = h 1 , h 2 , h 3 ): Higgs production: q ′ q g t W t φ φ W t g q q ′ Higgs decays: γ b W φ W φ W γ ¯ b ⇒ important to ensure on-shell properties of external Higgs boson Sven Heinemeyer, LHC-Higgs-XS inauguration workshop, Freiburg, 13.04.2010 14

  15. Correct on-shell amplitude with external Higgs h i : [ M. Frank, T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein, K. Williams ’06 ] � � � A ( h i ) = Γ h i + Z ij Γ h j + Z ik Γ h k Z i √ Z i : ensures that the residuum of the external Higgs boson is set to 1 Z ij : describes the transition from i → j ¯ f h i h i,j,k f Written more compact with the Z matrix : Z ij = √ Z i Z ij Sven Heinemeyer, LHC-Higgs-XS inauguration workshop, Freiburg, 13.04.2010 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend