giant radio array for neutrino detection xmax study
play

Giant Radio Array for Neutrino Detection Xmax Study Claire Gupin, - PowerPoint PPT Presentation

Giant Radio Array for Neutrino Detection Xmax Study Claire Gupin, Anne Zilles UHECR air showers - Xmax reconstruction From ZHAireS simulations to Xmax reconstruction Inclined UHECR air showers , proton or iron progenitor. Study impact of


  1. Giant Radio Array for Neutrino Detection Xmax Study Claire Guépin, Anne Zilles

  2. UHECR air showers - Xmax reconstruction From ZHAireS simulations to Xmax reconstruction Inclined UHECR air showers , proton or iron progenitor. • Study impact of • progenitor energy: from 10 17 eV to 10 19 eV. - spacing between antennas: from 250 m to 1250 m. - frequency band : 50 - 200 MHz versus 30 - 80 MHz. - mountain slope: 0º versus 10º. - inclination (zenith). - Strong hypothesis No antenna response (perfect dipole). • Next steps: include antenna response voltage traces with “computevoltage”: ok • noise model and threshold for power : work in progress… •

  3. How to get a radio footprint Simulate the radio signal for 160 antenna positions , which forms a star shape in vxB - vxvxB Get east-west and north-south component 
 → Bandpass filter for 50-200MHz (or 30-80MHz), no antenna model included so far Get the total integrated power for each simulated antenna position Interpolate the power in vxB – vxvxB 
 → rotate antenna positions in shower coordinates and choose power for each position If fake data: Add noise to the “data”

  4. Reconstruction method For each parameter set, 70 simulations (50 proton, 20 iron). One simulation = “fake data” (known Xmax) Simulation set (same properties, known Xmax) Normalized integrated power Comparison

  5. Reconstruction method For each parameter set, 70 simulations (50 proton, 20 iron). One simulation = “fake data” (known Xmax) Simulation set (same properties, known Xmax) Normalized integrated power Comparison Get 𝝍 2 Minimum of parabola fit 
 = reconstructed shower depth

  6. Impact of zenith angle Fixed parameters energy 10 19 eV • azimuth 40º • frequency band : 50 - 200 MHz mountain slope 10º • step 500 m Footprints zenith 72º zenith 77º zenith 83º

  7. Impact of zenith angle Fixed parameters energy 10 19 eV • azimuth 40º • frequency band : 50 - 200 MHz mountain slope 10º • step 500 m Power - lateral distribution function zenith 72º zenith 77º zenith 83º

  8. Impact of zenith angle Fixed parameters energy 10 19 eV • azimuth 40º • frequency band : 50 - 200 MHz mountain slope 10º • step 500 m Chi2 procedure zenith 72º zenith 77º zenith 83º

  9. Impact of zenith angle Fixed parameters energy 10 19 eV • azimuth 40º • frequency band : 50 - 200 MHz mountain slope 10º • step 500 m Histograms zenith 72º zenith 77º zenith 83º 68%: mean Xmax

  10. Impact of zenith angle Fixed parameters energy 10 19 eV • azimuth 40º • frequency band : 50 - 200 MHz mountain slope 10º • 68%: mean Xmax 99% 80 200 zen = 72 o zen = 72 o zen = 77 o zen = 77 o 70 175 zen = 83 o zen = 83 o 60 150 | X reco − X real | (g cm − 2 ) 50 125 | 40 100 − 30 75 | 20 50 10 25 0 0 200 400 600 800 1000 1200 200 400 600 800 1000 1200 Step (m) Step (m)

  11. Impact of mountain slope Fixed parameters zenith 77º • azimuth 40º • frequency band : 50 - 200 MHz energy 10 19 eV • step 500 m slope = 0º slope = 10º

  12. Impact of mountain slope Fixed parameters zenith 77º • azimuth 40º • frequency band : 50 - 200 MHz energy 10 19 eV • slope = 10 o slope = 0 o 60 50 | X reco − X real | (g cm − 2 ) 40 30 20 10 200 400 600 800 1000 1200 Step (m)

  13. Impact of energy and spacing Fixed parameters zenith 83º • azimuth 40º • frequency band : 50 - 200 MHz mountain slope 10º • 68%: mean Xmax 99% 99% 60 180 E = 10 17 eV E = 10 17 eV E = 10 17 . 5 eV E = 10 17 . 5 eV 160 E = 10 18 eV E = 10 18 eV 50 E = 10 18 . 5 eV E = 10 18 . 5 eV 140 E = 10 19 eV E = 10 19 eV | X reco − X real | (g cm − 2 ) 40 120 100 | 30 80 − 20 60 | 40 10 20 0 0 200 400 600 800 1000 1200 200 400 600 800 1000 1200 Distance (m) Step (m) Distance (m) Step (m)

  14. Impact of frequency band Fixed parameters zenith 83º • azimuth 40º • mountain slope 10º • Frequency bands 60 30 - 80 MHz 50 50 - 200 MHz | X reco − X real | (g cm − 2 ) 40 30 20 E = 10 17 eV E = 10 17 . 5 eV 10 E = 10 18 eV E = 10 19 eV 0 500 600 700 800 900 1000 1100 Distance (m)

  15. UHECR air showers - Xmax reconstruction From ZHAireS simulations to Xmax reconstruction Inclined UHECR air showers , proton or iron progenitor. • Study impact of • progenitor energy: from 10 17 eV to 10 19 eV. - spacing between antennas: from 250 m to 1250 m. - frequency band : 50 - 200 MHz versus 30 - 80 MHz. - mountain slope: 0º versus 10º. - inclination (zenith). - Strong hypothesis No antenna response (perfect dipole). • Next steps: include antenna response voltage traces with “computevoltage”: ok • noise model and threshold for power : work in progress… • Questions, discussion?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend