giant planet formation and migration scenarios
play

Giant Planet Formation and Migration Scenarios Christophe - PowerPoint PPT Presentation

R. Dawson, OHP, 10/09/15 Giant Planet Formation and Migration Scenarios Christophe Carreau/ESA Rebekah (Bekki) Dawson (University of California, Berkeley Miller Fellow; > Penn State) Center for Exoplanets and Habitable Worlds R.


  1. R. Dawson, OHP, 10/09/15 Giant Planet Formation and Migration Scenarios Christophe Carreau/ESA Rebekah (Bekki) Dawson (University of California, Berkeley Miller Fellow; —> Penn State) Center for Exoplanets and Habitable Worlds

  2. R. Dawson, OHP, 10/09/15 Giant Planet Formation and Migration Scenarios Christophe Carreau/ESA Rebekah (Bekki) Dawson (University of California, Berkeley Miller Fellow; —> Penn State) Center for Exoplanets and Habitable Worlds

  3. R. Dawson, OHP, 10/09/15 Giant planet formation and migration on the eve of 51 Peg b (B.b.) Formation of Jupiter by core accretion Migration of Neptune 100 Neptune Pluto t=0 solid surface density 10 gcm -2 solid surface density 7 gcm -2 10 1 t=present Neptune 3/2 2/1 0.1 1.0 10.0 Sun t (Myr) Pollack+ 93, 96 
 Malhotra 93, 95 
 (adapted for clarity) (adapted for clarity)

  4. R. Dawson, OHP, 10/09/15 Open questions B.b. • What proto-planetary disk conditions enable the formation of giant planets? • What mechanism(s) drives giant planet migration? • How do giant planets imprint their migration history on smaller bodies?

  5. R. Dawson, OHP, 10/09/15 A few recommended reviews relevant to giant planet formation, migration, and orbital evolution • “Disk-Planet Interactions During Planet Formation,” Papaloizou+06, PPV • “Theories of Planet Formation: Future Prospects,” Lissauer+06, PPV • “Forming Planetesimals in Solar and Extrasolar Nebulae,” Chiang & Youdin 10, AREPS • “The Long-Term Dynamical Evolution of Planetary Systems,” Davies + 14, PPVI • “Planet Population Synthesis,” Benz+14, PPVI • “The Occurrence and Architecture of Exoplanetary Systems,” Winn & Fabrycky 15, ARAA

  6. R. Dawson, OHP, 10/09/15 Open questions B.b. • What proto-planetary disk conditions enable the formation of giant planets? • What mechanism(s) drives giant planet migration? • How do giant planets imprint their migration history on smaller bodies?

  7. R. Dawson, OHP, 10/09/15 Exoplanet surveys reveal where giant planets form or migrate incomplete observed RV, exoplanets.org, Wright+11, complete-ish inferred, direct imaging, Brandt+14 0.01 0.10 1.00 10.00 100. 0.010 0.008 0.006 dN 0.004 0.002 0.000 0.01 0.01 0.10 0.10 1.00 1.00 10.00 10.00 100. 100. a (AU) RV, msini > 0.3 MJup

  8. dN/da R. Dawson, OHP, 10/09/15 = 0 (b) t = 1 . 0 Ormel+ 14 Boley 09 ( ( + FORMATION core accretion gravitational instability e.g., Pollack+ 96, Hubickyj+05 e.g., Boss+ 97, Mayer+02 Malik+ 15 * MIGRATION e.g., Lin+96, Alibert+05, Rasio (disk and/or tidal) & Ford 96, Wu & Murray 03

  9. dN/da R. Dawson, OHP, 10/09/15 = 0 (b) t = 1 . 0 Ormel+ 14 Boley 09 ( ( + FORMATION core accretion gravitational instability e.g., Pollack+ 96, Hubickyj+05 e.g., Boss+ 97, Mayer+02 Malik+ 15 * MIGRATION e.g., Lin+96, Alibert+05, Rasio (disk and/or tidal) & Ford 96, Wu & Murray 03

  10. R. Dawson, OHP, 10/09/15 Core accretion: build the core, accrete gas

  11. R. Dawson, OHP, 10/09/15 Run away gas accretion can be independent of semi-major axis Piso, Youdin, & Murray-Clay 2015 20 Lee, Chiang, & Ormel 2014 Z = Z � Z-gradient 15 Z = 20 Z � t run (Myr) Z = 16 Z � 10 t disk , slow 5 Z = 2 Z � 0 0.1 1.0 5.0 a (AU) Inner disk, 10 Earth mass core Outer disk, 4 Earth mass core

  12. R. Dawson, OHP, 10/09/15 Building the core depends on solid surface density, semi-major axis

  13. R. Dawson, OHP, 10/09/15 Building the core depends on solid surface density, semi-major axis High solid surface density Formation Timescale (Myr) 100.00 Isolation Mass (Earth) 10 4 s s a m Core too small e r o c 10.00 10 2 timescale 10 0 Timescale 1.00 too long 10 -2 0.10 10 -4 0.01 0.01 0.10 1.00 10.00 100. a (AU) surface density profile power law -3/2

  14. R. Dawson, OHP, 10/09/15 Building the core depends on solid surface density, semi-major axis

  15. R. Dawson, OHP, 10/09/15 Building the core depends on solid surface density, semi-major axis Low solid surface density Formation Timescale (Myr) 100.00 Isolation Mass (Earth) 10 4 Core too small 10.00 10 2 timescale 10 0 Timescale 1.00 s s a m e r o c too long 10 -2 0.10 10 -4 0.01 0.01 0.01 0.01 0.10 1.00 10.00 100. a (AU) surface density profile power law -3/2

  16. R. Dawson, OHP, 10/09/15 Building the core depends on solid surface density, semi-major axis High solid surface density Formation Timescale (Myr) 100.00 Isolation Mass (Earth) 10 4 s s a m Core too small e r o c 10.00 10 2 timescale 10 0 Timescale 1.00 too long 10 -2 0.10 Giant-planet 10 -4 metallicity correlation, e.g. Santos+01,04, 0.01 Fischer & Valenti 05 0.01 0.10 1.00 10.00 100. a (AU) surface density profile power law -3/2

  17. R. Dawson, OHP, 10/09/15 Thus from core accretion alone, we expect giant planets in a limited range of semi-major axes 0.01 0.10 1.00 10.00 100. 0.010 Timescale Core too small 0.008 too long 0.006 dN 0.004 0.002 0.000 0.01 0.01 0.10 0.10 1.00 1.00 10.00 10.00 100. 100. a (AU) msini > 0.3 MJup

  18. R. Dawson, OHP, 10/09/15 Instead, we see close-in and widely-separated Jupiters too observed RV, exolanets.org incomplete inferred, direct imaging, Brandt+14 0.01 0.10 1.00 10.00 100. 0.010 Timescale Core too small 0.008 too long 0.006 dN 0.004 0.002 0.000 0.01 0.01 0.10 0.10 1.00 1.00 10.00 10.00 100. 100. 50 AU 70 AU a (AU) 0.05 AU msini > 0.3 MJup Marois+ 08

  19. dN/da R. Dawson, OHP, 10/09/15 = 0 (b) t = 1 . 0 Ormel+ 14 Boley 09 ( ( + FORMATION core accretion gravitational instability e.g., Pollack+ 96, Hubickyj+05 e.g., Boss+ 97, Mayer+02 Malik+ 15 * MIGRATION e.g., Lin+96, Alibert+05, Rasio (disk and/or tidal) & Ford 96, Wu & Murray 03

  20. R. Dawson, OHP, 10/09/15 Solutions for forming/placing planets at wide separations tell us about disk properties Solution Disk requirements cm particles 0 (b) t = 1 . 0 Pebble accretion: enhance concentrated in the growth cross section midplane (e.g., Lambrechts & Johansen 12) Cold disk, fragmentation Formation via gravitational at end of disk lifetime instability (e.g., Kratter, Murray-Clay, & Youdin 10) Low viscosity, small scale Outward migration with 2+ height giant planets in resonance (e.g., Crida+ 09)

  21. R. Dawson, OHP, 10/09/15 Solutions for forming/placing hot Jupiters tell us about disk properties Solution Disk requirements Delivery of solids/ 0 (b) t = 1 . 0 Enhance solid surface planetesimals/cores to density by 10-100 inner disk (Discussion for super-E*rths: Lee+14, Schlichting 14) Formation via gravitational Unbound disk (Unlikely; instability Rafikov 2006) Disk properties for fast migration (viscosity, thermal/ Inward migration (e.g. Lin+ 96) entropy profile, etc.) (or tides); see Papaloizou+ 06 review

  22. R. Dawson, OHP, 10/09/15 Open questions B.b. Open questions B.b. • What proto-planetary disk conditions enable the formation of giant planets? • What mechanism drives giant planet migration? • How do giant planets imprint their migration history on other bodies?

  23. R. Dawson, OHP, 10/09/15 Open questions B.b. Open questions B.b. • What proto-planetary disk conditions enable the formation of giant planets? • What mechanism drives giant planet migration? • How do giant planets imprint their migration history on other bodies?

  24. R. Dawson, OHP, 10/09/15 Two types of giant planet migration 1. Disk migration 2. High eccentricity tidal migration gas e.g. Goldreich & Tremaine 1980 e.g. Hut 1981 applied to 51 Peg b by Lin+ 96 applied to 51 Peg b by Rasio & Ford 96 high eccentricity excited by planetary or binary companion

  25. R. Dawson, OHP, 10/09/15 Perturbations from a companion cause high eccentricity migration Planet-planet scattering e.g. Rasio & Ford 96, Chatterjee+ 08, Ford & Rasio 08, Matsumura+ 12, Beauge and Nesvory 12, Boley+ 12 Stellar or planetary Kozai e.g. Wu and Murray 03, Fabrycky & Tremaine 07, Secular chaos Wu and Lithwick 11 Naoz+11, 12

  26. R. Dawson, OHP, 10/09/15 Two types of giant planet migration 1. Disk migration 2. High eccentricity tidal migration gas e.g. Goldreich & Tremaine 1980 e.g. Hut 1981 applied to 51 Peg b by Lin+ 96 applied to 51 Peg b by Rasio & Ford 96 high eccentricity excited by planetary or binary companion

  27. R. Dawson, OHP, 10/09/15 Migration tests • Spin orbit alignments (OHP: Hirano; Morton & Johnson 10, Naoz+ 12)

  28. R. Dawson, OHP, 10/09/15 Hot Jupiter migration test 1: spin-orbit alignments 1. Disk migration 2. High eccentricity tidal migration Aligned Misaligned

  29. R. Dawson, OHP, 10/09/15 Hot Jupiter migration test 1: spin-orbit alignments 1. Disk migration 2. High eccentricity tidal migration Aligned Misaligned Misalignment of entire system: e.g., Rogers+ 12 (star), Batygin 12, Fielding+ 15 (disk), Mazeh+ 15 (flat systems)

  30. R. Dawson, OHP, 10/09/15 Hot Jupiter migration test 1: spin-orbit alignments 1. Disk migration 2. High eccentricity tidal migration Aligned Misaligned Coplanar high-eccentricity Misalignment of entire system: migration e.g., Rogers+ 12 (star), Batygin (e.g., Li+14, Petrovich 15) 12, Fielding+ 15 (disk), Mazeh+ Tidal realignment (e.g., Winn+ 10, 15 (flat systems) Albrecht+12; many theory papers incl. RID 14)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend