self induced dust traps overcoming planet formation
play

Self-induced dust traps: overcoming planet formation barriers - PowerPoint PPT Presentation

Self-induced dust traps: overcoming planet formation barriers Jean-Franois Gonzalez Guillaume Laibe Centre de Recherche Astrophysique de Lyon, France Sarah Maddison Swinburne University of Technology, Melbourne, Australia Planet formation


  1. Self-induced dust traps: overcoming planet formation barriers Jean-François Gonzalez Guillaume Laibe Centre de Recherche Astrophysique de Lyon, France Sarah Maddison Swinburne University of Technology, Melbourne, Australia

  2. Planet formation • Core accre)on paradigm • Small dust grains ➞ pebbles ➞ planetesimals ➞ planets ➞ ➞ ➞ easy bo>leneck easy • The barriers of planet forma)on • Radial dri: Weidenschilling1977, Nakagawa+1986, Birns9el+2010, Laibe+2012,2014 • Fragmenta)on Dullemond+Dominik2005, Blum+Wurm2008 • Bouncing Zsom+2010, Windmark+2012

  3. The radial drift barrier • Sub-Keplerian gas drags Keplerian dust ⇒ dust se>ling and dri: • Dust dynamics controlled by the Stokes number St √ St = ρ s Ω K s 2 πρ s s St mid = Σ g ρ g c s ◆ 2 d ln P g ✓ H St v d ,r ( z = 0) = d ln r v K 1 + St 2 r • St ≪ 1, small sizes (1-10 µm): dust coupled to gas • St~1, median sizes (100 µm-10 cm): strong influence of gas drag • St ≫ 1, large sizes (1-10 m): dust insensi)ve to gas

  4. The fragmentation and bouncing barriers • Grain collisional evolu)on: fragmenta)on threshold V frag • Growth when V rel < V frag • Fragmenta)on when V rel > V frag • Bouncing when V rel ≲ V frag Seizinger2011

  5. Possible solution: dust traps • Pressure maxima in the disk • Vor)ces Barge+Sommeria1995, Lyra+Mac Low2012, Regály+2012, Méheut+2013, Zhu+2014 • Dead zone inner edge Dzyurkevich+2010 • Planet gap edges de Val-Borro+2007, Fouchet+2007,2010, Gonzalez+2012, Zhu2012,2014 • ‘‘Bumpy’’ gas surface density Pinilla+2012, Bethune+2016 ➡ Dust concentra)ons • ! = " d / " g ↗ , V rel ↘ ⇒ solves planet forma)on barriers • …but need for special condi)ons

  6. Simulations • SPH 3D two-phase (gas+dust) global simula)ons Barrière-Fouchet+2005, Laibe+2008, Gonzalez+2015, Pignatale+2017 • Aerodynamic drag • self-consistent, grain-size dependent dynamics • backreac)on of dust on gas • Grain growth • Stepinski & Valageas (1997) ✏ = ⇢ d • compact par)cles d s ⇢ g d t ∝ ✏ V rel √ • perfect s)cking St V rel ∝ c s • Fragmenta)on 1 + St • when V rel > V frag • conserva)ve model • Ini)al disk model • Σ g ∝ r − p c s ∝ r − q/ 2 St mid ∝ s r p • T ∝ r − q

  7. Flat disk • Setup • CTTS disk St mid ∝ s • M ✰ = 1 M ⊙ , M disk = 0.01 M ⊙ V rel ∝ c s ∝ r − 1 / 2 • p = 0, q = 1 • R out = 160 AU • α = 10 -2 • Ini)al dust/gas ra)o Inner disk Outer disk • ! 0 = 1% , uniform ↓ ↓ • Ini)al grain size V rel > V frag V rel < V frag ↓ ↓ • s 0 = 10 µm , uniform fragmentation growth • Fragmenta)on threshold • V frag = 10, 15, 20, 25 m.s -1

  8. Flat disk, V frag = 15 m.s -1 s n i a r g d e l p Resul)ng size distribu)on similar to u o c Brauer+2008, Birns)el+2010, … e D Coupled grains Without backreac)on Gonzalez+2017

  9. The importance of back-reaction • Drag of dust on gas • o:en neglected when ! = " d / " g is small • becomes important when dust concentrates • slows down dust radial dri: ◆ 2 d ln P g ✓ H St v d ,r ( z = 0) = d ln r v K (1 + ✏ ) 2 + St 2 r • modifies the gas mo)on ◆ 2 d ln P g ✓ H ✏ St v g ,r ( z = 0) = v visc d ln r v K g ,r − (1 + ✏ ) 2 + St 2 r • Consequences • Streaming instability Youdin+Goodman2005, Johansen+2007, Bai+Stone2010, Yang+Johansen2014, Drążkowska+Dullemond2014 • Self-induced dust traps

  10. Flat disk, V frag = 15 m.s -1 With backreac)on s n i a r g d e l p u o c e D Coupled grains Without backreac)on Gonzalez+2017

  11. Formation of the self-induced dust trap ◆ 2 d ln P g ✓ H St St v d ,r ( z = 0) = d ln r v K (1 + ✏ ) 2 + St 2 r large grains slow drift with back-reaction, slower drift St = 1 fast drift without back-reaction small grains slow drift Gonzalez+2017

  12. Formation of the self-induced dust trap ◆ 2 d ln P g ✓ H ✏ St v g ,r ( z = 0) = v visc d ln r v K g ,r − (1 + ✏ ) 2 + St 2 r Gonzalez+2017

  13. Influence of V frag r pu ∝ V − 2 /q Pile-up loca)on: largest grains have St ~ 1 and V rel ~ V frag ⟹ frag Gas pressure Gas pressure gradient Gonzalez+2017

  14. Steep disk • Setup • CTTS disk • M ✰ = 1 M ⊙ , M disk = 0.01 M ⊙ • p = 1, q = 1/2 • R out = 400 AU • α = 10 -2 • Ini)al dust/gas ra)o • ! 0 = 1% , 3%, 5%, uniform • Ini)al grain size • s 0 = 10 µm , uniform • Fragmenta)on threshold • V frag = 10, 15, 20, 25 m.s -1

  15. Steep disk Influence of the dust-to-gas ra)o ! 0 = 1% ! 0 = 3% V frag = 10 m.s -1 ! 0 = 5% Influence of the fragmenta)on threshold V frag = 10 m.s -1 V frag = 15 m.s -1 V frag = 20 m.s -1 V frag = 25 m.s -1 Gonzalez+2017 ! 0 = 1% ! 0 = 5%

  16. Pressure maxima in the steep disk Gas pressure Gonzalez+2017

  17. Conclusion • Self-induced dust traps: robust mechanism • Traps can cause rings and gaps in disk images • Easier dust growth and planetesimal forma)on ⟹ solu)on to the radial-dri: and fragmenta)on barriers • Influence of snow lines ⟹ see Arnaud’s poster

  18. Plans • Switch to PHANTOM ! • Add dust growth and fragmenta)on • 1st step: Stepinski & Valageas formalism, two-fluid • Arnaud’s PhD project • 2nd step: Smoluchowski equa)on • Maxime Lombart’s PhD project (with Guillaume Laibe) • Ul)mate goal: unify with mul)grain, in one-fluid and mul)-fluid

  19. Thank you!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend