constraints on radial anisotropy in the central pacific
play

Constraints on radial anisotropy in the central Pacific upper mantle - PowerPoint PPT Presentation

S14A-05 Constraints on radial anisotropy in the central Pacific upper mantle from the NoMelt OBS array Joshua B. Russell 1 , James B. Gaherty 1 , Peiying (Patty) Lin 2 , Molly Zebker 1 1 Lamont-Doherty Earth Observatory, Columbia


  1. � S14A-05 � Constraints on radial anisotropy in the central Pacific upper mantle from the NoMelt OBS array Joshua B. Russell 1 , James B. Gaherty 1 , Peiying (Patty) Lin 2 , Molly Zebker 1 1 Lamont-Doherty Earth Observatory, Columbia University 2 Taiwan Ocean Research Institute, Kaohsiung, Taiwan

  2. NoMelt Experiment 160 ˚ W 150 ˚ W 140 ˚ W 25 ˚ N 25 ˚ N Situated on relatively pristine oceanic lithosphere (~70 Ma) 60 Ma 20 ˚ N 20 ˚ N One year of continuous data collected in 70 Ma 8 0 2012 M a 15 ˚ N 15 ˚ N 600x400 km footprint – 16 broad-band OBS 10 ˚ N 10 ˚ N – Short-period OBS 5 ˚ N 5 ˚ N – Magnetotelluric array 0 ˚ 0 ˚ 160 ˚ W 150 ˚ W 140 ˚ W

  3. Motivation • Azimuthal and radial anisotropy constrain flow patterns within the mantle • Previous observations of anisotropy in the lithosphere beneath ocean basins are Radial consistent with horizontally Anisotropy aligned olivine fabric associated Azimuthal with seafloor spreading V SH > V SV Anisotropy • Inconsistencies remain between recent regional and global models of radial anisotropy in the lithosphere NoMelt provides new constraints on Pacific mantle anisotropy, measured at a local scale. Nishimura & Forsyth, 1989 �

  4. NoMelt azimuthal anisotropy Azimuthal variation of Rayleigh wave phase velocities oriented parallel to the fossil spreading direction (~78º) in the lithosphere V SV G Amplitude Fast Direction • Strong anisotropy in lid oriented parallel to FSD • Weak anisotropy in the low velocity zone (100-150 km) • Stronger anisotropy below the LVZ associated with asthenospheric flow How does strength of radial anisotropy beneath the central Pacific compare with azimuthal Lin et al., Nature (2016) � anisotropy? PeiYing (Patty) Lin: [S21C-05] Tues. 9-9:15 Room 307

  5. Motivation: Radial anisotropy Central Pacific Models 0 0 • Radial anisotropy ξ is also important for constraining upper-mantle circulation and evolution of the 50 50 lithosphere-asthenosphere system 100 100 • Radial anisotropy may reflect Depth (km) processes controlling the G 150 150 discontinuity • Discrepancies exist between current 200 200 models of radial anisotropy in the central Pacific upper-mantle Beghein 2014 250 250 NF 52 − 110 Ma • Requires constraints from both Love S362WMANI+M Pa5 and Rayleigh waves NoMelt SV 300 300 3.5 4 4.5 5 0.9 1 1.1 V SV (km/s) ξ = (V SH /V SV ) 2

  6. Method Ambient noise provides constraints from both Rayleigh and Love wave fields Phase velocities derived from waveform fitting of ambient-noise cross spectra [ Menke & Jin, BSSA 2015 ] SNR : 2.3127 Distance : 540.6619km Data 0.02 Synthetic 0.01 cross spectra: 0 − 0.01 240 cross-correlation functions − 0.02 0.1 0.15 0.2 0.25 Frequency (Hz) B01 − B24 Phase Velocity (km/s) 4.6 4.4 Starting Model 4.2 Fit 4 3.8 4 5 6 7 8 9 10 Period (s)

  7. 1 st overtone Rayleigh waves (4-10 s) Cross spectral power All stations Z • Sensitivity of 1 st overtone Rayleigh comparable − 80 mean to fundamental mode Love wave − 100 Power • Strong 2 θ azimuthal signal − 120 – Rayleigh fast direction parallel to fossil − 140 1 2 10 10 spreading (78º) Period (s) All stations Z Vertical 4-10 s 0 water 2 θ Anisotropy column 100 10 s 8.6 s 7.5 s 6.7 s 10 s 8.5714 s 7.5 s 6.6667 s 4 4 4 4 200 c/c (%) Distance (km) 2 2 2 2 4 0 0 0 0 δ c/c (%) − 2 − 2 − 2 − 2 2 300 − 4 − 4 − 4 − 4 − 100 0 100 − 100 0 100 − 100 0 100 − 100 0 100 0 6 s 5.5 s 5 s 4.6 s 6 s 5.4545 s 5 s 4.6154 s 400 − 2 4 4 4 4 2 2 2 2 500 0 0 0 0 − 2 − 2 − 2 − 2 1 st overtone − 4 − 4 − 4 − 4 − 100 0 100 − 100 0 100 − 100 0 100 − 100 0 100 600 − 100 0 100 Azimuth (degrees) − 200 − 100 0 100 200 Azimuth (degrees) lag time (s) 4 s

  8. Fundamental mode Love waves (4-10 s) Cross spectral power All stations T − 80 • Clear 4 θ azimuthal signal mean Power − 100 – Love slow direction parallel to fossil − 120 spreading (78º) − 140 1 2 – 10 10 Consistent with predictions of olivine fabric Period (s) All stations T T : All non − repeated pairs, filtered at 4 − 10(s) Transverse 4-10 s 0 4 θ Anisotropy 100 10 s 8.6 s 7.5 s 6.7 s 10 s 8.5714 s 7.5 s 6.6667 s 4 4 4 4 200 c/c (%) Distance (km) 2 2 2 2 4 0 0 0 0 δ c/c (%) − 2 − 2 − 2 − 2 2 300 − 4 − 4 − 4 − 4 − 100 0 100 − 100 0 100 − 100 0 100 − 100 0 100 0 6 s 5.5 s 5 s 4.6 s 6 s 5.4545 s 5 s 4.6154 s 400 − 2 4 4 4 4 2 2 2 2 500 0 0 0 0 − 2 − 2 − 2 − 2 − 4 − 4 − 4 − 4 − 100 0 100 − 100 0 100 − 100 0 100 − 100 0 100 600 − 100 0 100 Azimuth (degrees) − 200 − 100 0 100 200 Azimuth (degrees) lag time (s) 4 s

  9. Measurements Phase Velocity (km/s) 4.5 Strong azimuthal anisotropy 4 Isotropic suggests significant mantle 3.5 phase veloc. sensitivity Fund. mode Love Rayleigh S1 Rayleigh S0 Fund. mode Rayleigh 3 1 st overtone Rayleigh Love T0 NoMelt SV NoMelt 2.5 1 10 Fréchet Kernels (5-7.5 s) Peak − to − peak amp (%) 5 4 θ Love SV SH 4 2 θ Rayleigh Azimuthal 0 0 3 anisotropy 2 (%) 5 5 1 0 1 Depth (km) Depth (km) 10 10 10 4 θ slow 15 15 150 Fast Direction 2 θ fast FSD ~78º Azimuth 100 20 20 (º) Fund. mode Love 50 Rayleigh S1 1 st overtone Rayleigh Love T0 25 25 0 0 1 2 0 1 2 1 10 − 7 − 7 x 10 x 10 Period (s)

  10. Inversion Solving for horizontal and vertical Crustal Model PV SV V P & V S 4 4 V P V S 5 5 Starting model 6 6 V P 7 7 Depth (km) Depth (km) 0-35km: NoMelt refraction model accounting for ~8% P-azimuthal 8 8 anisotropy in the mantle (D. Lizarralde personal communications) 9 9 V S 10 10 Sediments: Seafloor compliance 11 11 [ Ruan et al., JGR 2014 ] NoMelt SV NoMelt Crust: V P /V S = ~1.85 [ Brocher, BSSA 2005 ] 12 12 crust1.0 Starting model Mantle: NoMelt SV [ Lin et al., Nature 2016 ] 13 13 0 2 4 6 0 2 4 V P (km/s) V S (km/s)

  11. Inversion results V SH > V SV required in the mantle lithosphere and cannot be ruled out in the crust Fit to data V SV V SV Anisotropy Anisotropy Rayleigh Love 4 4 4.2 Phase velocity (km/s) 4.4 6 6 4 4.3 8 8 ~ 2% 4.2 3.8 4.1 10 10 Observed Depth (km) 3.6 4 5 6 7 5 6 7 12 12 ~ 5% Rayleigh Residual Love Residual 14 14 2 σ error 1 1 16 16 δ c % 0 0 18 18 Starting Model − 1 − 1 starting 20 20 3 4 5 1 1.1 1.2 5 6 7 5 6 7 V (km/s) ξ = (V SH /V SV ) 2 Periods (s) Periods (s)

  12. Summary & Interpretation Both azimuthal and radial anisotropy required in the lithospheric mantle To Ridge Mantle FSD Ø Radial anisotropy: V SH > V SV (~ 3-7%) 4 θ slow Ø Clear 2 θ and 4 θ azimuthal anisotropy • Consistent with petrologic models of olivine 2 θ fast with orthorhombic or hexagonal symmetry • Horizontal preferred alignment of olivine a- axis associated with fossil spreading V SH > V SV ? ¡ 0 - 5 % Crust V SH > V SV Ø V SH > V SV (0-5%) 3 - 7% a-axis • Horizontal crustal fabric? ? ¡ – Layering processes? Cracks? Fluids?

  13. Additional inversions: Good fits V SV Anisotropy Rayleigh Love 4 4 4.2 Phase velocity (km/s) 4.4 6 6 4 4.3 8 8 4.2 3.8 4.1 10 10 Depth (km) 3.6 4 5 6 7 8 5 6 7 8 12 12 Rayleigh Residual Love Residual 14 14 1 1 16 16 δ c % 0 0 18 18 − 1 − 1 20 20 1 1.1 1.2 3 4 5 5 6 7 8 5 6 7 8 ξ = (V SH /V SV ) 2 V (km/s) Periods (s) Periods (s)

  14. Additional inversions: Poor fits V SV Anisotropy Rayleigh Love 4 4 4.2 Phase velocity (km/s) 4.4 6 6 4 4.3 8 8 4.2 3.8 4.1 10 10 Depth (km) 3.6 4 5 6 7 8 5 6 7 8 12 12 Rayleigh Residual Love Residual 14 14 1 1 16 16 δ c % 0 0 starting 18 18 iso mantle iso crust + mantle − 1 − 1 fixed crust 20 20 1 1.1 1.2 3 4 5 5 6 7 8 5 6 7 8 ξ = (V SH /V SV ) 2 V (km/s) Periods (s) Periods (s)

  15. Kernel Nonlinearity: Love waves (20-100 s) Love Waves (20-100 s) 201202021334 20.5km 57 56 Distance (degrees) 55 54 53 52 51 900 1000 1100 1200 1300 1400 1500 1600 Seconds

  16. Kernel Nonlinearity: 4-30 s Rayleigh Love 1 st overtone Fundamental Mode Velocity Model 0 0 0 50 50 50 100 100 100 5 s 5 S Depth (km) 5.4545 s 5.4545 S 6 s 6 S 150 150 6.6667 s 150 6.6667 S 7.5 s 7.5 S 8.5714 s 8.5714 S 10 s 10 S 12 s 12 S 200 200 200 12.8571 s 12.8571 S 13.8462 s 13.8462 S 15 s 15 S 16.3636 s 16.3636 S 18 s 18 S 250 250 250 20 s 20 S 22.5 s 22.5 S 25.7143 s 25.7143 S 30 s 30 S 300 300 300 3 4 5 0 2 4 0 2 4 V SH (km/s) − 8 − 8 x 10 x 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend