generalized ruud s theorem
play

Generalized Ruuds Theorem Mariusz Kubkowski a , Jan Mielniczuk a , b - PowerPoint PPT Presentation

Generalized Ruuds Theorem Mariusz Kubkowski a , Jan Mielniczuk a , b a Warsaw University of Technology Faculty of Mathematics and Information Science, b Institute of Computer Science Polish Academy of Sciences Bdlewo, December 1st 2016 M.


  1. Generalized Ruud’s Theorem Mariusz Kubkowski a , Jan Mielniczuk a , b a Warsaw University of Technology Faculty of Mathematics and Information Science, b Institute of Computer Science Polish Academy of Sciences Będlewo, December 1st 2016 M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 1 / 29

  2. Introduction p , k ∈ N , k ≤ p , M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 2 / 29

  3. Introduction p , k ∈ N , k ≤ p , ( X , Y ) ∈ R p × { 0 , 1 } - random vector, X ∼ P X , M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 2 / 29

  4. Introduction p , k ∈ N , k ≤ p , ( X , Y ) ∈ R p × { 0 , 1 } - random vector, X ∼ P X , q : R k → [ 0 , 1 ] - unknown response function, M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 2 / 29

  5. Introduction p , k ∈ N , k ≤ p , ( X , Y ) ∈ R p × { 0 , 1 } - random vector, X ∼ P X , q : R k → [ 0 , 1 ] - unknown response function, β 1 , . . . , β k ∈ R p , - true coefficients, � � ∈ R p × k . B = β 1 . . . β k M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 2 / 29

  6. Introduction p , k ∈ N , k ≤ p , ( X , Y ) ∈ R p × { 0 , 1 } - random vector, X ∼ P X , q : R k → [ 0 , 1 ] - unknown response function, β 1 , . . . , β k ∈ R p , - true coefficients, � � ∈ R p × k . B = β 1 . . . β k Conditional distribution of Y | X : P ( Y = 1 | X ) = q ( β T 1 X , . . . , β T k X ) =: q ( B T X ) . M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 2 / 29

  7. Introduction β 01 , . . . , β 0 k ∈ R , q ( B T X ) = ˜ q ( β 01 + β T 1 X , . . . , β 0 k + β T k X ) . M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 3 / 29

  8. Introduction β 01 , . . . , β 0 k ∈ R , q ( B T X ) = ˜ q ( β 01 + β T 1 X , . . . , β 0 k + β T k X ) . Special case ( k = 1 , B = β 1 ): P ( Y = 1 | X ) = q ( β T 1 X ) . M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 3 / 29

  9. Misspecification problem We fit the model: P ( Y = 1 | X ) = q L ( β ∗ 0 + β ∗ T X ) - model M 0 (with intercept) M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 4 / 29

  10. Misspecification problem We fit the model: P ( Y = 1 | X ) = q L ( β ∗ 0 + β ∗ T X ) - model M 0 (with intercept) or P ( Y = 1 | X ) = q L ( β ∗ T X ) - model M (without intercept) , M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 4 / 29

  11. Misspecification problem We fit the model: P ( Y = 1 | X ) = q L ( β ∗ 0 + β ∗ T X ) - model M 0 (with intercept) or P ( Y = 1 | X ) = q L ( β ∗ T X ) - model M (without intercept) , where: 1 1 + e − x , x ∈ R . q L ( x ) = M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 4 / 29

  12. Misspecification problem Log-likelihood function ( b 0 ∈ R , b ∈ R p ): � � �� l ( b 0 , b , X , Y ) = Y ( b 0 + b T X ) − log b 0 + b T X 1 + exp . M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 5 / 29

  13. Misspecification problem Log-likelihood function ( b 0 ∈ R , b ∈ R p ): � � �� l ( b 0 , b , X , Y ) = Y ( b 0 + b T X ) − log b 0 + b T X 1 + exp . We want to find coefficients (in the model M 0 ): ( β ∗ 0 , β ∗ ) = ( b 0 , b ) ∈ R × R p E ( X , Y ) l ( b 0 , b , X , Y ) arg max or (in the model M ): β ∗ = arg max E ( X , Y ) l ( 0 , b , X , Y ) . b ∈ R p M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 5 / 29

  14. Misspecification problem Theorem (Li, Duan, 1989) If q ( B T X ) ∈ ( 0 , 1 ) a.s. and E || X || < ∞ , then there exist solutions for models M 0 and M . M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 6 / 29

  15. Misspecification problem Theorem (Li, Duan, 1989) If q ( B T X ) ∈ ( 0 , 1 ) a.s. and E || X || < ∞ , then there exist solutions for models M 0 and M . Theorem (Li, Duan, 1989) If q ( B T X ) ∈ ( 0 , 1 ) a.s., E || X || 2 < ∞ , and E XX T > 0 , then the solutions for models M 0 and M are unique. M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 6 / 29

  16. Misspecification problem Theorem (Li, Duan, 1989) If q ( B T X ) ∈ ( 0 , 1 ) a.s. and E || X || < ∞ , then there exist solutions for models M 0 and M . Theorem (Li, Duan, 1989) If q ( B T X ) ∈ ( 0 , 1 ) a.s., E || X || 2 < ∞ , and E XX T > 0 , then the solutions for models M 0 and M are unique. Normal equations (model M 0 ): X T � T ( q ( B T X ) − q L ( β ∗ E ( X , Y ) D ( b 0 , b ) l ( β ∗ 0 , β ∗ , X , Y ) = E 0 + β ∗ T X )) = 0 , � 1 equivalently: X T � T = E q ( B T X ) X T � T . E q L ( β ∗ 0 + β ∗ T X ) � � 1 1 M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 6 / 29

  17. Ruud’s theorem ( k = 1) Ruud’s condition for B and k = 1 (Ruud, 1983) ∀ z ∈ R ∃ u 0 , u ∈ R p : E ( X | β T 1 X = z ) = u 0 + uz Remark: Ruud’s condition is satisfied, when X has elliptically contoured distribution, in particular normal distribution. M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 7 / 29

  18. Ruud’s theorem ( k = 1) Ruud’s condition for B and k = 1 (Ruud, 1983) ∀ z ∈ R ∃ u 0 , u ∈ R p : E ( X | β T 1 X = z ) = u 0 + uz Remark: Ruud’s condition is satisfied, when X has elliptically contoured distribution, in particular normal distribution. Theorem (Ruud, 1983) If k = 1 , q ( β T 1 X ) ∈ ( 0 , 1 ) a.s., X satisfies Ruud’s condition for B and k = 1 , E || X || 2 < ∞ , and E XX T > 0 , then in the models M and M 0 there exists η ∈ R such that: β ∗ = ηβ 1 . M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 7 / 29

  19. Generalized Ruud’s theorem Ruud’s condition for B (Li, 1991) k ∀ z ∈ R k ∃ u 0 ∈ R p , U ∈ R p × k : E ( X | B T X = z ) = u 0 + U z = u 0 + � U ( i ) z i i = 1 M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 8 / 29

  20. Generalized Ruud’s theorem Ruud’s condition for B (Li, 1991) k ∀ z ∈ R k ∃ u 0 ∈ R p , U ∈ R p × k : E ( X | B T X = z ) = u 0 + U z = u 0 + � U ( i ) z i i = 1 Theorem If q ( B T X ) ∈ ( 0 , 1 ) a.s., X satisfies Ruud’s condition for B , E || X || 2 < ∞ , and E XX T > 0 , then the coefficients of the logistic models M and M 0 satisfy the following condition: k ∃ η ∈ R k : β ∗ = B η = � η i β i . i = 1 M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 8 / 29

  21. Form of η Theorem (representation of η ) If the assumptions of the generalized Ruud’s theorem are satisfied, rank B = k , and additionally X satisfies Ruud’s condition for β ∗ , then η from the generalized Ruud’s theorem satisfies the following equation: a β ∗ · η = a B , where a G = ( Var ( G T X )) − 1 Cov ( G T X , Y ) for G ∈ R p × l ( l ∈ N ) - full column rank matrix. Moreover, if Cov ( B T X , Y ) � = 0 , then a β ∗ � = 0 . M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 9 / 29

  22. Form of η Theorem (representation of η ) If the assumptions of the generalized Ruud’s theorem are satisfied, rank B = k , and additionally X satisfies Ruud’s condition for β ∗ , then η from the generalized Ruud’s theorem satisfies the following equation: a β ∗ · η = a B , where a G = ( Var ( G T X )) − 1 Cov ( G T X , Y ) for G ∈ R p × l ( l ∈ N ) - full column rank matrix. Moreover, if Cov ( B T X , Y ) � = 0 , then a β ∗ � = 0 . Remark: If X ∼ N p ( µ, Σ) , Σ > 0 , q - differentiable and E | Dq ( B T X ) | < ∞ , then from the Stein’s lemma: a B = E Dq ( B T X ) , a β ∗ = E q ′ L ( β ∗ T X ) . M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 9 / 29

  23. Algorithm for finding η X ∼ N ( µ, Σ) , Σ > 0 , rank B = k . Let (model M 0 ): U = B T X , ˜ η = [ β ∗ U = [ 1 U T ] T , ˜ 0 η T ] T . M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 10 / 29

  24. Algorithm for finding η X ∼ N ( µ, Σ) , Σ > 0 , rank B = k . Let (model M 0 ): U = B T X , ˜ η = [ β ∗ U = [ 1 U T ] T , ˜ 0 η T ] T . Consider the function: η T ˜ U )˜ U − E q ( U )˜ F (˜ η ) = E q L (˜ U , Newton-Raphson iterations ( ˜ η 0 - fixed): η n )) − 1 F (˜ η n + 1 = ˜ ˜ η n − ( DF (˜ η n ) . Problem: how to compute expected values? M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 10 / 29

  25. Algorithm for finding η X ∼ N ( µ, Σ) , Σ > 0 , rank B = k . Let (model M 0 ): U = B T X , ˜ η = [ β ∗ U = [ 1 U T ] T , ˜ 0 η T ] T . Consider the function: η T ˜ U )˜ U − E q ( U )˜ F (˜ η ) = E q L (˜ U , Newton-Raphson iterations ( ˜ η 0 - fixed): η n )) − 1 F (˜ η n + 1 = ˜ ˜ η n − ( DF (˜ η n ) . Problem: how to compute expected values? Gauss - Hermite quadratures (from R package fastGHQuad ). M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 10 / 29

  26. Additive misspecification - special case Let: k � q ( B T X ) = λ i q i ( β T i X ) , i = 1 k � where for each i = 1 , . . . , k : q i : R → ( 0 , 1 ) , λ i ≥ 0 , λ i = 1 . i = 1 M. Kubkowski, J. Mielniczuk Generalized Ruud’s Theorem 2016-12-01 11 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend