a generalized fej r s theorem for locally compact groups
play

A Generalized Fejrs Theorem for Locally Compact Groups Huichi Huang - PowerPoint PPT Presentation

A Generalized . . . . . . . . . . . . . . . . . . . . . . A Generalized Fejrs Theorem for Locally Compact Groups Huichi Huang April 22, 2016 . . Fejrs . Theorem for Locally Compact Groups Motivation


  1. A Generalized . . . . . . . . . . . . . . . . . . . . . . A Generalized Fejér’s Theorem for Locally Compact Groups Huichi Huang April 22, 2016 . . Fejér’s . Theorem for Locally Compact Groups Motivation Preliminaries The Main Theorem Some Special Cases . . . . . . . . . . . . . . . Shanghai Jiao Tong University 黄辉斥

  2. A Generalized . . . . . . . . . . . . . . . . . . . . . . Outline Motivation Preliminaries The Main Theorem . . Fejér’s . Theorem for Locally Compact Groups Motivation Preliminaries The Main Theorem Some Special Cases . . . . . . . . . . . . . . . Some Special Cases 黄辉斥

  3. A Generalized . Fejér’s . . . . . . . . . . . . . . . . . . . . . Motivation Theorem (Fejér, 1900) . . . . Theorem for Locally Compact Groups Motivation Preliminaries The Main Theorem . Cases . Some Special . . . . . . . . . . . . 黄辉斥 Let T = [0 , 1) be the unit circle. For f in L 1 ( T ) , if both the left limit and the right limit of f ( x ) exist at x 0 in T (denoted by f ( x 0 +) and f ( x 0 − ) respectively), then n →∞ K n ∗ f ( x 0 ) = 1 lim 2[ f ( x 0 +) + f ( x 0 − )] . Here K n ( x ) = sin 2 ( n +1) π x ( n +1) sin 2 π x is the Fejér’s kernel .

  4. A Generalized . . . . . . . . . . . . Fejér’s . . . . . . . . . . . . . . . Theorem for Locally Compact Groups Motivation Preliminaries The Main Theorem Some Special . Cases . . . . . . . . . . . . 黄辉斥 f ( x 0 − ) f ( x 0 +) x 0 Question: Could Fejér’s theorem be generalized to T d ?

  5. A Generalized . . . . . Fejér’s . . . . . . . . . . . . . . . . . A partial answer: Theorem (A multivariable Fejér’s theorem) . . . . Theorem for Locally Compact Groups . Preliminaries The Main Theorem Some Special Cases . Motivation . . . . . . kernel. . . . . . . 黄辉斥 Assume that f belongs to L ∞ ( T d ) with d ≥ 2 . If for x ∈ T d , the limit f ( x , k ) exists for every k in { 0 , 1 } d , then n ∗ f ( x ) = 1 n →∞ K d ∑ lim f ( x , k ) . 2 d k ∈{ 0 , 1 } d d Here K d ∏ n ( x 1 , · · · , x d ) = K n ( x j ) is the multivariable Fejér’s j =1

  6. A Generalized . . . . . . . . . . . . Fejér’s . . . . . . . . . . . . . . . Theorem for Locally Compact Groups Motivation Preliminaries The Main Theorem Some Special . Cases . . . . . . . . . . . . Roughly speaking f ( x , k ) is the limit of f ( y ) when y approaches x via one of the 2 d directions. 黄辉斥 T 2 = [0 , 1) 2 x

  7. A Generalized . . . . . . Fejér’s . . . . . . . . . . . . . . . . Observations So it is possible to get a generalized Fejér’s theorem for locally . . . . Theorem for Locally Compact Groups . Motivation Preliminaries The Main Theorem Some Special Cases compact groups. . . . . . . . . . . . . . { K d n =1 is an approximate identity of L 1 ( T d ) ; n } ∞ 黄辉斥 f ( x − y ) for a Borel subset J k of T d such that f ( x , k ) = lim y → 0 y ∈ J k { J k } k ∈{ 0 , 1 } d is a fjnite partition of T d and every J k ∩ N is nonempty for any neighborhood N of 0 ; ∫ n ( x ) dx = 1 K d lim 2 d . n →∞ J k

  8. A Generalized . . . . Fejér’s . . . . . . . . . . . . . . . . . . Preliminaries is given by . . . . Theorem for Locally Compact Groups Motivation . The Main Theorem Some Special Cases . Preliminaries . . . . . . . . . . . . G -a locally compact Hausdorfg group with a fjxed left Haar measure µ . e G -the identity of G . 黄辉斥 L 1 ( G ) -the space of integrable functions (with respect to µ ) on G . L ∞ ( G ) -the space of essentially bounded functions (with respect to µ ) on G . The convolution f ∗ g for f in L 1 ( G ) ∪ L ∞ ( G ) and g in L 1 ( G ) ∫ f ( y ) g ( y − 1 x ) d µ ( y ) f ∗ g ( x ) = G for every x ∈ G .

  9. A Generalized . . Fejér’s . . . . . . . . . . . . . . . . . . . . Defjnition (Approximate identity) 3 . . . . Theorem for Locally Compact Groups Motivation Preliminaries The Main . Some Special Cases . Theorem . . . . . . . . . . . . 黄辉斥 An approximate identity is a family of functions { F θ } θ ∈ Θ in L 1 ( G ) such that 1 ∥ F θ ∥ L 1 ( G ) ≤ C for all θ ; 2 ∫ G F θ ( x ) d µ ( x ) = 1 for all θ ; ∫ lim N c | F θ ( x ) | d µ ( x ) = 0 for any neighborhood N of e G . θ There always exists an approximate identity in L 1 ( G ) .

  10. A Generalized . . Fejér’s . . . . . . . . . . . . . . . . . . . . Defjnition (Local partition) 1 . . . . Theorem for Locally Compact Groups Motivation Preliminaries The Main . Some Special Cases . Theorem . . . . . . . . . . . . 黄辉斥 A fjnite collection { A 1 , A 2 , · · · , A k } of Borel subsets of G is called a local partition (at e G ) if the following are true: A i ∩ A j = ∅ for 1 ≤ i ̸ = j ≤ k ; k ∪ 2 µ ( G \ A i ) = 0 ; i =1 3 each A j ∩ N ̸ = ∅ for any neighborhood N of e G .

  11. A Generalized . . . . . . . . . . . . . Fejér’s . . . . . . . . . . Picture of a local partition . . . . Theorem for Locally Compact Groups Motivation Preliminaries The Main Theorem Some Special Cases . . . . . . . . . . . . . G 黄辉斥 N e G

  12. A Generalized . . . . . . . Fejér’s . . . . . . . . . . . . . . A generalized Fejér’s theorem for locally compact groups Theorem (H. 2015) then . . . . Locally Compact Groups . Motivation Preliminaries The Main Theorem Some Special Cases . . Theorem for . . . . . . . . . . . . Consider a locally compact group G with a fjxed left Haar measure µ . Let { F θ } θ ∈ Θ be an approximate identity of L 1 ( G ) . 黄辉斥 Assume that there exists a local partition { A 1 , A 2 , · · · , A k } of ∫ G such that lim F θ ( y ) d µ ( y ) = λ j for every 1 ≤ j ≤ k . θ A j For f in L ∞ ( G ) , if there exists x in G such that f ( y − 1 x ) (denoted by f ( x , A j ) ) exists for every 1 ≤ j ≤ k , lim y → e G y ∈ A j k ∑ lim θ F θ ∗ f ( x ) = λ j f ( x , A j ) . j =1

  13. A Generalized . . . . Fejér’s . . . . . . . . . . . . . . . . . . . Theorem (Continued) . . . . Theorem for Locally Compact Groups Motivation . The Main Theorem Some Special Cases Preliminaries . . . . . . . . . . . . 黄辉斥 Moreover if lim y ∈N c | F θ ( y ) | = 0 for any neighborhood N of sup θ e G , then for every f in L 1 ( G ) ∪ L ∞ ( G ) such that each f ( x , A j ) exists at some x in G , we have k ∑ lim θ F θ ∗ f ( x ) = λ j f ( x , A j ) . j =1

  14. A Generalized Fejér’s . . . . . . . . . . . . . . . . . . . . . . . Then . . . . Locally Compact Groups Theorem for Motivation Preliminaries The Main Theorem Some Special Cases . . . . . . . . . . . . . d-torus T d d For k = ( k 1 , · · · , k d ) in { 0 , 1 } d , defjne I k = ∏ I k j with j =1 黄辉斥 I 0 = (0 , 1 2 ) and I 1 = ( 1 2 , 1) . ∫ 1 ∫ 1 2 K n ( t ) dt = 1 0 K n ( t ) dt = 2 for all n ≥ 0 . 2 1 So { I k } k ∈{ 0 , 1 } d is a local partition of T d = [0 , 1) d with d ∫ ∫ K n ( x j ) dx j = 1 K d ∏ n ( x ) dx = 2 d I k I kj j =1 for all k ∈ { 0 , 1 } d and n ≥ 0 .

  15. A Generalized . . . . Fejér’s . . . . . . . . . . . . . . . . . . Corollary exists, then . . . . Theorem for Locally Compact Groups Motivation . The Main Theorem Some Special Cases . Preliminaries . . . . . . . . . . . . For f in L 1 ( T d ) , defjne f ( x , I k ) = lim f ( x − y ) for every y → 0 y ∈ I k 黄辉斥 k ∈ { 0 , 1 } d . Let d ≥ 2 . For f in L ∞ ( T d ) and x in T d , if each f ( x , I k ) n ∗ f ( x ) = 1 n →∞ K d ∑ lim f ( x , I k ) . 2 d k ∈{ 0 , 1 } d

  16. A Generalized . . . . . . . Fejér’s . . . . . . . . . . . . . . . . . . . . Theorem for Locally Compact . Motivation Preliminaries The Main Theorem Some Special Cases Groups . . . . . . . . . . . . Euclidean spaces R d The Poisson kernel P θ ( t ) is given by 1 黄辉斥 P θ ( t ) = πθ (1 + t 2 θ 2 ) for all t ∈ R and θ > 0 . Then { P θ ( t ) } θ> 0 is an approximate identity of L 1 ( R ) and θ → 0 sup lim t ∈N c | P θ ( t ) | = 0 for every neighborhood N of 0 in R . d Defjne P d ∏ θ ( x ) = P θ ( x j ) For any positive integer d , then j =1 { P d θ ( x ) } θ> 0 is an approximate identity of L 1 ( R d ) .

  17. A Generalized . . . . Fejér’s . . . . . . . . . . . . . . . . . . . Note that . . . . Theorem for Locally Compact Groups Motivation . The Main Theorem Some Special Cases Preliminaries . . . . . . . . . . . . For k = ( k 1 , · · · , k d ) in { 0 , 1 } d , defjne 黄辉斥 d ∏ J k = J k l l =1 with J 0 = ( −∞ , 0) and J 1 = (0 , ∞ ) . ∫ 0 ∫ ∞ 0 P θ ( t ) dt = 1 −∞ P θ ( t ) dt = 2 for all θ > 0 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend