b a y c p l e i t s c u
play

B A Y C P L E I T S C U PART II univalence n loop e w - PowerPoint PPT Presentation

B A Y C P L E I T S C U PART II univalence n loop e w ? p a t h s loop l o o p A By Jonah Kan - Own work, CC BY-SA 3.0, h ps://commons.wikimedia.org/w/index.php?curid=27584059 I know how to guarantee a combinatorial


  1. B A Y C P L E I T S C U PART II

  2. univalence n loop e w ? p a t h s loop l o o p A

  3. By Jonah Kan - Own work, CC BY-SA 3.0, h  ps://commons.wikimedia.org/w/index.php?curid=27584059 I know how to guarantee a combinatorial structure has enough paths Daniel Marinus Kan My group knows how to bring that into the design of type theory *Guillaume Brunerie and Daniel R. Licata are also pioneers Thierry Coquand By Andrej Bauer - h  p://andrej.com/mathematicians/C/Coquand_Thierry.html, CC BY-SA 2.5 si, h  ps://commons.wikimedia.org/w/index.php?curid=15264235

  4. 1. What are the types? (form) univalence 2. What are the constructors? (intro) n loop e 3. How to consume an element? (elim) w p a 4. What if a constructor is consumed? ( β ) t h s 5. Uniqueness principle? ( η ) 6. How to compose stu  ? (Kan operators) s r o a t r e p o w e n e p y t y r e v e r o f A

  5. *Homogeneous Compositions face face *not changing cap type type type

  6. should work with substitution [BCH]

  7. variant: diagonal faces and alternative filling directions

  8. Coercion

  9. variant 1: alternative coercion directions

  10. variant 2: freezing parts of the input (used in cubical Agda)

  11. + With these two operators every type has enough paths

  12. + They also give changing heterogeneous compositions type

  13. Major Variants [CCHM+CHM] [AFH+ABCFHL+CH] 0, 1, ∧ , ∨ , ~ 0, 1 algebra on 𝕁 De Morgan homogeneous standard variant composition variant 2 variant 1 coercion ready-to-use cubical Agda red  proof assistants

  14. A : U i j j=0, k: 𝕁 ⊦ N 1 : A [k=0 ↦ M] M : A i i=1, k: 𝕁 ⊦ N 2 : A [k=0 ↦ M, j=0 ↦ N 1 ] j j=1, k: 𝕁 ⊦ N 3 : A [k=0 ↦ M, i=1 ↦ N 2 ] i=1 j=1 j=0 2 3 1 [ j=0 ↦ N 1 , i=1 ↦ N 2 , j=1 ↦ N 3 ] k (faces are unordered in CCHM+CHM) i j hcomp k A [ j=0 ↦ N 1 , i=1 ↦ N 2 , j=1 ↦ N 3 ] M : A k h omogeneous i j

  15. k: 𝕁 ⊦ A : U M : A[0/k] k i j comp k A [ … ] M : A[1/k]

  16. j: 𝕁 ⊦ A : U M : A[0/j] i=0 ⊦ A ≡ A[0/j] : U j i (type at i=0 cannot change) transp j A (~i) M : A[1/j] this represents (~i=1) = (i=0) in general, r: 𝕁 to represent r=1

  17. Constraints in Contexts φ ⊦ M : A r := 0 | 1 | i | r 1 ∧ r 2 | r 1 ∨ r 2 | ~ r (De Morgan) φ := false | true | (r = 0) | (r = 1) | φ 1 ∧ φ 2 | φ 1 ∨ φ 2

  18. r := 0 | 1 | i | r 1 ∧ r 2 | r 1 ∨ r 2 | ~ r (De Morgan) φ := false | true | (r = 0) | (r = 1) | φ 1 ∧ φ 2 | φ 1 ∨ φ 2 r ↦ r=1 preserves ∧ , ∨ , and ~ where ~r=1 means r=0 Any φ is equivalent to r=1 for some r e.g., (i=0) ∨ (i=1) = (~i=1) ∨ (i=1) = (~i ∨ i)=1 e.g., trapns j A r M

  19. Restricted by Partial Elements M : A [ φ ↦ N] M : A φ ⊦ M ≡ N : A and

  20. 2. What are the constructors? (intro) 3. How to consume an element? (elim) 4. What if a constructor is consumed? ( β ) 5. Uniqueness principle? ( η ) 6. hcomp and transp (and thus comp) Gives us all the paths Definable for every type

  21. φ , i: 𝕁 ⊦ N : ⊤ M : ⊤ hcomp i ⊤ [ φ ↦ N] M ≡ M : ⊤ r : 𝕁 M : ⊤ transp i ⊤ r M ≡ M : ⊤

  22. the unit univalence n loop e the empty type w p a t h functions s pairs paths hcomp the circle transp universes A (many others)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend