game changers

Game-changers: . Detecting shifts in the flow of campaign - PowerPoint PPT Presentation

. Game-changers: . Detecting shifts in the flow of campaign contributions . University of Rochester . Matthew Blackwell . APWG . March 8th, 2013 . . . Why not polls? . Lack of variation . 1. . Cheap talk . 2. . Data


  1. . Game-changers: . Detecting shifts in the flow of campaign contributions . University of Rochester . Matthew Blackwell . APWG . March 8th, 2013

  2. .

  3. .

  4. . Why not polls? . Lack of variation . 1. . Cheap talk . 2. . Data (un)availability . 3.

  5. . Why not polls? . Lack of variation . 1. . Cheap talk . 2. . Data (un)availability . 3.

  6. . Why not polls? . Lack of variation . 1. . Cheap talk . 2. . Data (un)availability . 3.

  7. . Why not polls? . Lack of variation . 1. . Cheap talk . 2. . Data (un)availability . 3.

  8. .

  9. When do campaign contributions take off or fall flat? . A measurement question . When do campaigns take off or fall flat? . . Tools: Bayesian nonparametric model for overdispersed count data.

  10. . A measurement question . When do campaigns take off or fall flat? . . Tools: Bayesian nonparametric model for overdispersed count data. When do campaign contributions take off or fall flat?

  11. . A measurement question . When do campaigns take off or fall flat? . . Tools: Bayesian nonparametric model for overdispersed count data. When do campaign contributions take off or fall flat?

  12. . Why contributions? . Lots of variation . 1. . Costly participation . 2. . Data availability . 3.

  13. . Why contributions? . Lots of variation . 1. . Costly participation . 2. . Data availability . 3.

  14. . Why contributions? . Lots of variation . 1. . Costly participation . 2. . Data availability . 3.

  15. . Why contributions? . Lots of variation . 1. . Costly participation . 2. . Data availability . 3.

  16. . 0 . 2000 . 1500 . 1000 . 500 . . . 200 . 150 . 100 . 50 . 0 . Why changepoint models?

  17. . The challenges . Modeling daily contribution counts . Choosing the number of changepoints

  18. . The challenges . Modeling daily contribution counts . Choosing the number of changepoints

  19. . 0 . 2500 . 2000 . 1500 . 1000 . 500 . . . Jan 12 . Oct 11 . Jul 11 . Apr 11 . Contributions . Number of . Overdispersion in campaign contributions

  20. πœ‡ 𝑒 = exp (π‘Œ 𝑒 𝛾) . (link function) . [𝑧 𝑒 |𝛾, 𝜍, π‘Œ] ∼ NegBin (𝜍, 𝜍/(𝜍 + πœ‡ 𝑒 )) . (random effect) . [πœƒ 𝑒 |𝜍] ∼ Gamma (𝜍, 𝜍) . . Bayesian model for overdispersed counts . (data) . [𝑧 𝑒 |πœƒ 𝑒 , 𝛾, 𝜍, π‘Œ] ∼ Poisson (πœƒ 𝑒 πœ‡ 𝑒 ) . For observations 𝑒 in {1, … , π‘ˆ} : . marginal distribution of 𝑧 :

  21. . (link function) . [𝑧 𝑒 |𝛾, 𝜍, π‘Œ] ∼ NegBin (𝜍, 𝜍/(𝜍 + πœ‡ 𝑒 )) . (random effect) . [πœƒ 𝑒 |𝜍] ∼ Gamma (𝜍, 𝜍) . . Bayesian model for overdispersed counts . (data) . [𝑧 𝑒 |πœƒ 𝑒 , 𝛾, 𝜍, π‘Œ] ∼ Poisson (πœƒ 𝑒 πœ‡ 𝑒 ) . For observations 𝑒 in {1, … , π‘ˆ} : . marginal distribution of 𝑧 : πœ‡ 𝑒 = exp (π‘Œ 𝑒 𝛾)

  22. . (link function) . [𝑧 𝑒 |𝛾, 𝜍, π‘Œ] ∼ NegBin (𝜍, 𝜍/(𝜍 + πœ‡ 𝑒 )) . (random effect) . [πœƒ 𝑒 |𝜍] ∼ Gamma (𝜍, 𝜍) . . Bayesian model for overdispersed counts . (data) . [𝑧 𝑒 |πœƒ 𝑒 , 𝛾, 𝜍, π‘Œ] ∼ Poisson (πœƒ 𝑒 πœ‡ 𝑒 ) . For observations 𝑒 in {1, … , π‘ˆ} : . marginal distribution of 𝑧 : πœ‡ 𝑒 = exp (π‘Œ 𝑒 𝛾)

  23. . (link function) . [𝑧 𝑒 |𝛾, 𝜍, π‘Œ] ∼ NegBin (𝜍, 𝜍/(𝜍 + πœ‡ 𝑒 )) . (random effect) . [πœƒ 𝑒 |𝜍] ∼ Gamma (𝜍, 𝜍) . . Bayesian model for overdispersed counts . (data) . [𝑧 𝑒 |πœƒ 𝑒 , 𝛾, 𝜍, π‘Œ] ∼ Poisson (πœƒ 𝑒 πœ‡ 𝑒 ) . For observations 𝑒 in {1, … , π‘ˆ} : . marginal distribution of 𝑧 : πœ‡ 𝑒 = exp (π‘Œ 𝑒 𝛾)

  24. πœ‡ 𝑒 = exp (π‘Œ 𝑒 𝛾 𝑙 ) 𝑑 𝑒 = 𝑙 Pr(𝑑 𝑒+τ·‘ = 𝑙 | 𝑑 𝑒 = 𝑙) = π‘ž 𝑙 Pr(𝑑 𝑒+τ·‘ = 𝑙 + 1 | 𝑑 𝑒 = 𝑙) = 1 βˆ’ π‘ž 𝑙 Pr(𝑑 𝑒+τ·‘ = π‘˜ | 𝑑 𝑒 = 𝑙) = 0 . . . . . . (random effect) . [πœƒ 𝑒 |𝜍, 𝑑 𝑒 ] ∼ Gamma (𝜍 𝑙 , 𝜍 𝑙 ) . (link function) Generalize to a mixture model . (1, … , 𝐿) . regimes . . (data) . [𝑧 𝑒 |𝑑 𝑒 , πœƒ 𝑒 , 𝛾, 𝜍, π‘Œ] ∼ Poisson (πœƒ 𝑒 πœ‡ 𝑒 ) . ( βˆ€π‘˜ βˆ‰ {𝑙, 𝑙 + 1} )

  25. πœ‡ 𝑒 = exp (π‘Œ 𝑒 𝛾 𝑙 ) Pr(𝑑 𝑒+τ·‘ = 𝑙 | 𝑑 𝑒 = 𝑙) = π‘ž 𝑙 Pr(𝑑 𝑒+τ·‘ = 𝑙 + 1 | 𝑑 𝑒 = 𝑙) = 1 βˆ’ π‘ž 𝑙 Pr(𝑑 𝑒+τ·‘ = π‘˜ | 𝑑 𝑒 = 𝑙) = 0 . (link function) . . . . (random effect) . [πœƒ 𝑒 |𝜍, 𝑑 𝑒 ] ∼ Gamma (𝜍 𝑙 , 𝜍 𝑙 ) . . Generalize to a mixture model . (1, … , 𝐿) . regimes . . (data) . [𝑧 𝑒 |𝑑 𝑒 , πœƒ 𝑒 , 𝛾, 𝜍, π‘Œ] ∼ Poisson (πœƒ 𝑒 πœ‡ 𝑒 ) . ( βˆ€π‘˜ βˆ‰ {𝑙, 𝑙 + 1} ) 𝑑 𝑒 = 𝑙

  26. Pr(𝑑 𝑒+τ·‘ = 𝑙 | 𝑑 𝑒 = 𝑙) = π‘ž 𝑙 Pr(𝑑 𝑒+τ·‘ = 𝑙 + 1 | 𝑑 𝑒 = 𝑙) = 1 βˆ’ π‘ž 𝑙 Pr(𝑑 𝑒+τ·‘ = π‘˜ | 𝑑 𝑒 = 𝑙) = 0 . (link function) . . . . (random effect) . [πœƒ 𝑒 |𝜍, 𝑑 𝑒 ] ∼ Gamma (𝜍 𝑙 , 𝜍 𝑙 ) . . Generalize to a mixture model . (1, … , 𝐿) . regimes . . (data) . [𝑧 𝑒 |𝑑 𝑒 , πœƒ 𝑒 , 𝛾, 𝜍, π‘Œ] ∼ Poisson (πœƒ 𝑒 πœ‡ 𝑒 ) . ( βˆ€π‘˜ βˆ‰ {𝑙, 𝑙 + 1} ) πœ‡ 𝑒 = exp (π‘Œ 𝑒 𝛾 𝑙 ) 𝑑 𝑒 = 𝑙

  27. Pr(𝑑 𝑒+τ·‘ = 𝑙 | 𝑑 𝑒 = 𝑙) = π‘ž 𝑙 Pr(𝑑 𝑒+τ·‘ = 𝑙 + 1 | 𝑑 𝑒 = 𝑙) = 1 βˆ’ π‘ž 𝑙 Pr(𝑑 𝑒+τ·‘ = π‘˜ | 𝑑 𝑒 = 𝑙) = 0 . (link function) . . . . (random effect) . [πœƒ 𝑒 |𝜍, 𝑑 𝑒 ] ∼ Gamma (𝜍 𝑙 , 𝜍 𝑙 ) . . Generalize to a mixture model . (1, … , 𝐿) . regimes . . (data) . [𝑧 𝑒 |𝑑 𝑒 , πœƒ 𝑒 , 𝛾, 𝜍, π‘Œ] ∼ Poisson (πœƒ 𝑒 πœ‡ 𝑒 ) . ( βˆ€π‘˜ βˆ‰ {𝑙, 𝑙 + 1} ) πœ‡ 𝑒 = exp (π‘Œ 𝑒 𝛾 𝑙 ) 𝑑 𝑒 = 𝑙

  28. Pr(𝑑 𝑒+τ·‘ = 𝑙 + 1 | 𝑑 𝑒 = 𝑙) = 1 βˆ’ π‘ž 𝑙 Pr(𝑑 𝑒+τ·‘ = π‘˜ | 𝑑 𝑒 = 𝑙) = 0 . Generalize to a mixture model . . . . (random effect) . [πœƒ 𝑒 |𝜍, 𝑑 𝑒 ] ∼ Gamma (𝜍 𝑙 , 𝜍 𝑙 ) . (link function) . . (1, … , 𝐿) . regimes . . (data) . [𝑧 𝑒 |𝑑 𝑒 , πœƒ 𝑒 , 𝛾, 𝜍, π‘Œ] ∼ Poisson (πœƒ 𝑒 πœ‡ 𝑒 ) . ( βˆ€π‘˜ βˆ‰ {𝑙, 𝑙 + 1} ) πœ‡ 𝑒 = exp (π‘Œ 𝑒 𝛾 𝑙 ) 𝑑 𝑒 = 𝑙 Pr(𝑑 𝑒+τ·‘ = 𝑙 | 𝑑 𝑒 = 𝑙) = π‘ž 𝑙

  29. Pr(𝑑 𝑒+τ·‘ = π‘˜ | 𝑑 𝑒 = 𝑙) = 0 . Generalize to a mixture model . . . . (random effect) . [πœƒ 𝑒 |𝜍, 𝑑 𝑒 ] ∼ Gamma (𝜍 𝑙 , 𝜍 𝑙 ) . (link function) . . (1, … , 𝐿) . regimes . . (data) . [𝑧 𝑒 |𝑑 𝑒 , πœƒ 𝑒 , 𝛾, 𝜍, π‘Œ] ∼ Poisson (πœƒ 𝑒 πœ‡ 𝑒 ) . ( βˆ€π‘˜ βˆ‰ {𝑙, 𝑙 + 1} ) πœ‡ 𝑒 = exp (π‘Œ 𝑒 𝛾 𝑙 ) 𝑑 𝑒 = 𝑙 Pr(𝑑 𝑒+τ·‘ = 𝑙 | 𝑑 𝑒 = 𝑙) = π‘ž 𝑙 Pr(𝑑 𝑒+τ·‘ = 𝑙 + 1 | 𝑑 𝑒 = 𝑙) = 1 βˆ’ π‘ž 𝑙

  30. . Generalize to a mixture model . . . . (random effect) . [πœƒ 𝑒 |𝜍, 𝑑 𝑒 ] ∼ Gamma (𝜍 𝑙 , 𝜍 𝑙 ) . (link function) . . (1, … , 𝐿) . regimes . . (data) . [𝑧 𝑒 |𝑑 𝑒 , πœƒ 𝑒 , 𝛾, 𝜍, π‘Œ] ∼ Poisson (πœƒ 𝑒 πœ‡ 𝑒 ) . ( βˆ€π‘˜ βˆ‰ {𝑙, 𝑙 + 1} ) πœ‡ 𝑒 = exp (π‘Œ 𝑒 𝛾 𝑙 ) 𝑑 𝑒 = 𝑙 Pr(𝑑 𝑒+τ·‘ = 𝑙 | 𝑑 𝑒 = 𝑙) = π‘ž 𝑙 Pr(𝑑 𝑒+τ·‘ = 𝑙 + 1 | 𝑑 𝑒 = 𝑙) = 1 βˆ’ π‘ž 𝑙 Pr(𝑑 𝑒+τ·‘ = π‘˜ | 𝑑 𝑒 = 𝑙) = 0

  31. . π‘ž τ·‘ . 1 . 2 . 3 . . . 1 βˆ’ π‘ž τ·‘ . changepoint . β‹― . N . Units (𝛾 τ·€ , 𝜍 τ·€ ) Traditional changepoint models . . 1 . Regimes . 2 . 3 4 . . (𝛾 τ·‘ , 𝜍 τ·‘ ) . Regimes . (𝛾 τ·’ , 𝜍 τ·’ ) . (𝛾 τ·£ , 𝜍 τ·£ ) Must be in the last regime

  32. . π‘ž τ·‘ . 1 . 2 . 3 . . . 1 βˆ’ π‘ž τ·‘ . changepoint . β‹― . N . Units (𝛾 τ·€ , 𝜍 τ·€ ) Traditional changepoint models . . 1 . Regimes . 2 . 3 4 . . (𝛾 τ·‘ , 𝜍 τ·‘ ) . Regimes . (𝛾 τ·’ , 𝜍 τ·’ ) . (𝛾 τ·£ , 𝜍 τ·£ ) Must be in the last regime

  33. . π‘ž τ·‘ . 1 . 2 . 3 . . . 1 βˆ’ π‘ž τ·‘ . changepoint . β‹― . N . Units (𝛾 τ·€ , 𝜍 τ·€ ) Traditional changepoint models . . 1 . Regimes . 2 . 3 4 . . (𝛾 τ·‘ , 𝜍 τ·‘ ) . Regimes . (𝛾 τ·’ , 𝜍 τ·’ ) . (𝛾 τ·£ , 𝜍 τ·£ ) Must be in the last regime

  34. . π‘ž τ·‘ . 1 . 2 . 3 . . . 1 βˆ’ π‘ž τ·‘ . changepoint . β‹― . N . Units (𝛾 τ·€ , 𝜍 τ·€ ) Traditional changepoint models . . 1 . Regimes . 2 . 3 4 . . (𝛾 τ·‘ , 𝜍 τ·‘ ) . Regimes . (𝛾 τ·’ , 𝜍 τ·’ ) . (𝛾 τ·£ , 𝜍 τ·£ ) Must be in the last regime

  35. . π‘ž τ·‘ . 1 . 2 . 3 . . . 1 βˆ’ π‘ž τ·‘ . changepoint . β‹― . N . Units (𝛾 τ·€ , 𝜍 τ·€ ) Traditional changepoint models . . 1 . Regimes . 2 . 3 4 . . (𝛾 τ·‘ , 𝜍 τ·‘ ) . Regimes . (𝛾 τ·’ , 𝜍 τ·’ ) . (𝛾 τ·£ , 𝜍 τ·£ ) Must be in the last regime

Recommend


More recommend