galois connections in categorial type logic
play

Galois Connections in Categorial Type Logic Raffaella Bernardi - PowerPoint PPT Presentation

Galois Connections in Categorial Type Logic Raffaella Bernardi joint work with Carlos Areces and Michael Moortgat Contents First Last Prev Next Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


  1. Galois Connections in Categorial Type Logic Raffaella Bernardi joint work with Carlos Areces and Michael Moortgat Contents First Last Prev Next ◭

  2. Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Residuated operators in categorial type logic . . . . . . . . . . . . . . . . . . 5 3 Residuated and Galois connected functions . . . . . . . . . . . . . . . . . . . 6 4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 Interpretation of the constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 The base logic NL ( ✸ , · 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 9 7 Some useful derived properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 8 Linguistic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 9 Polarity Items (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 10 Polarity Items (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 11 Polarity Items (III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 12 Typology of PIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 13 Options for cross-linguistic variation . . . . . . . . . . . . . . . . . . . . . . . . . 16 14 Greek (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 15 Greek (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 16 Italian (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 17 Italian (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Contents First Last Prev Next ◭

  3. 18 The point up till now . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 19 Connection with DMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 20 Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 21 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 22 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Contents First Last Prev Next ◭

  4. 1. Introduction ◮ Categorial type logic provides a modular architecture to study constants and variation of grammatical composition: ⊲ base logic grammatical invariants, universals of form/meaning assembly; ⊲ structural module non-logical axioms (postulates), lexically anchored options for structural reasoning. ◮ Up till now, research on the constants of the base logic has focussed on (unary, binary, . . . ) residuated pairs of operators. E.g. ⊲ Value Raising: A/C ⊢ B/C if A ⊢ B ; ⊲ Lifting theorem: A ⊢ ( B/A ) \ B . ◮ We extend the type-logical vocabulary with Galois connected operators and show how natural languages exploit the extra derivability patterns created by these connectives. Contents First Last Prev Next ◭

  5. 2. Residuated operators in categorial type logic The connectives • B, /B and A • , A \ of NL in [Lambek 58, 61] form residuated pairs of operators, i.e. ∀ A, B, C ∈ TYPE , [ RES 2 ] A ⊢ C/B iff A • B ⊢ C iff B ⊢ A \ C Similarly, the ✸ , ✷ ↓ connectives introduced in [Moortgat 95] form a residuated pair, i.e. ∀ A, B ∈ TYPE , A ⊢ ✷ ↓ B [ RES 1 ] ✸ A ⊢ B iff Contents First Last Prev Next ◭

  6. 3. Residuated and Galois connected functions Consider two posets A = ( A, ⊑ A ) and B = ( B, ⊑ B ), and functions f : A → B, g : B → A . The pair ( f, g ) is said to be residuated iff ∀ a ∈ A, b ∈ B [ RES 1 ] f ( a ) ⊑ B b iff a ⊑ A g ( b ) The pair ( f, g ) is said to be Galois connected iff ∀ a ∈ A, b ∈ B [ GC 1 ] b ⊑ B f ( a ) iff a ⊑ A g ( b ) Remark Let B ′ be a poset s.t. B ′ = ( B, ⊑ ′ def B ) where x ⊑ ′ B y = y ⊑ B x , and h : B → A . If ( f, h ) is a residuated pair with respect to ⊑ A and ⊑ ′ B , then it’s Galois connected with respect to ⊑ A and ⊑ B . b ⊑ B f ( a ) iff f ( a ) ⊑ ′ iff a ⊑ A h ( b ) B Contents First Last Prev Next ◭

  7. 4. Models Frames F = � W, R 2 0 , R 2 ✸ , R 3 • � W : ‘signs’, resources, expressions R 3 • : ‘Merge’, grammatical composition R 2 ✸ : ‘feature checking’, structural control R 2 0 : accessibility relation for the Galois connected operators Models M = � F, V � Valuation V : TYPE �→ P ( W ): types as sets of expressions Contents First Last Prev Next ◭

  8. 5. Interpretation of the constants { x | ∃ y ( R 2 V ( ✸ A ) = ✸ xy & y ∈ V ( A ) } V ( ✷ ↓ A ) { x | ∀ y ( R 2 = ✸ yx ⇒ y ∈ V ( A ) } { x | ∀ y ( y ∈ V ( A ) ⇒ ¬ R 2 V ( 0 A ) = 0 yx } V ( A 0 ) { x | ∀ y ( y ∈ V ( A ) ⇒ ¬ R 2 = 0 xy } { z |∃ x ∃ y [ R 3 zxy & x ∈ V ( A ) & y ∈ V ( B )] } V ( A • B ) = { x |∀ y ∀ z [( R 3 zxy & y ∈ V ( B )) ⇒ z ∈ V ( C )] } V ( C/B ) = { y |∀ x ∀ z [( R 3 zxy & x ∈ V ( A )) ⇒ z ∈ V ( C )] } V ( A \ C ) = Contents First Last Prev Next ◭

  9. 6. The base logic NL ( ✸ , · 0 ) Transitivity/Reflexivity of the derivability relation, plus ( res-l ) A • B ⊢ C iff A ⊢ C/B ( res-r ) A • B ⊢ C iff B ⊢ A \ C ( res-1 ) ✸ A ⊢ B iff A ⊢ ✷ ↓ B ( gal ) A ⊢ 0 B iff B ⊢ A 0 Soundness/Completeness A ⊢ B is provable iff ∀ F, V, V ( A ) ⊆ V ( B ) See [Areces, Bernardi & Moortgat 2001], also for Gentzen presentation, cut elimi- nation and decidability. Contents First Last Prev Next ◭

  10. 7. Some useful derived properties ✷ ↓ A ⊢ ✷ ↓ B (Iso/Anti)tonicity A ⊢ B implies ✸ A ⊢ ✸ B and B 0 ⊢ A 0 0 B ⊢ 0 A and A/C ⊢ B/C and C \ A ⊢ C \ B C/B ⊢ C/A and B \ C ⊢ A \ C A • C ⊢ B • C and C • A ⊢ C • B ✸✷ ↓ A ⊢ A A ⊢ ✷ ↓ ✸ A Compositions A ⊢ 0 ( A 0 ) A ⊢ ( 0 A ) 0 ( A/B ) • B ⊢ A A ⊢ ( A • B ) /B B • ( B \ A ) ⊢ A A ⊢ B \ ( B • A ) Closure Let ( · ) ∗ be 0 ( · 0 ), ( 0 · ) 0 , ✷ ↓ ✸ ( · ), X/ ( ·\ X ), ( X/ · ) \ X . ∀ A ∈ TYPE we have A ∗ ⊢ B ∗ if A ⊢ B, A ∗∗ ⊢ A ∗ A ⊢ A ∗ , Contents First Last Prev Next ◭

  11. 8. Linguistic Applications When looking at linguistic applications NL ( ✸ , · 0 ) offers: ◮ new (syntactic) derivability relations; ◮ new expressiveness on the semantic-syntactic interface; ◮ downward entailment relations. We will show how ◮ the new patterns can be used to account for polarity items; ◮ the new relation on the syntactic-semantic interface sheds light on possible connections between dynamic Montague grammar and categorial type logic. Contents First Last Prev Next ◭

  12. 9. Polarity Items (I) 1. * Any student left. 2. Some student left. 3. John didn’t see any student . 4. John didn’t see some student . Lexicon : ( np \ s ) / ( np \ ( 0 s ) 0 ) didn’t : q ( np, ( 0 s ) 0 , ( 0 s ) 0 ) any N : q ( np, ✷ ↓ ✸ s, ✷ ↓ ✸ s ) some N : s ⊢ ( 0 s ) 0 np ⊢ np ( \ L ) ( 0 s ) 0 �⊢ ✷ ↓ ✸ s np ◦ np \ s ⊢ ( 0 s ) 0 ( qL ) q ( np, ( 0 s ) 0 , ( 0 s ) 0 ) ◦ np \ s ⊢ ✷ ↓ ✸ s � �� � ���� Any student left q ( np, s 1 , s 2 ) def = ( np → s 1 ) → s 2 Contents First Last Prev Next ◭

  13. 10. Polarity Items (II) ❀ Wide Scope Negation ( ¬ GQ). np ⊢ np s ⊢ s 1 ( \ L ) np ⊢ np np ◦ np \ s ⊢ s 1 ( /L ) s 2 ⊢ ( 0 s ) 0 np ◦ (( np \ s ) /np ◦ np ) ⊢ s 1 ( qL ) np ◦ (( np \ s ) /np ◦ q ( np, s 1 , s 2 )) ⊢ ( 0 s ) 0 s ⊢ ✷ ↓ ✸ s np ⊢ np np ◦ np \ s ⊢ ✷ ↓ ✸ s ( \ L ) ( \ R ) ( np \ s ) /np ◦ q ( np, s 1 , s 2 ) ⊢ np \ ( 0 s ) 0 ( /L ) ◦ (( np \ s ) / ( np \ ( 0 s ) 0 ) )) ⊢ ✷ ↓ ✸ s np ◦ (( np \ s ) /np ◦ q ( np, s 1 , s 2 ) ���� � �� � � �� � � �� � John see didn’t GQ ◮ GQ: some student s 2 = ✷ ↓ ✸ s ✷ ↓ ✸ s �⊢ ( 0 s ) 0 ; ( 0 s ) 0 ⊢ ( 0 s ) 0 ◮ GQ: any student s 2 = ( 0 s ) 0 Contents First Last Prev Next ◭

  14. 11. Polarity Items (III) ❀ Narrow Scope Negation (GQ ¬ ). s ⊢ ( 0 s ) 0 np ⊢ np np ⊢ np s ⊢ s 1 ( \ R − L ) ( \ L ) np \ s ⊢ np \ ( 0 s ) 0 np ◦ np \ s ⊢ s 1 ( /L ) np ◦ (( np \ s ) / ( np \ ( 0 s ) 0 ) ◦ np \ s ) ⊢ s 1 np ⊢ np ( /L ) np ◦ (( np \ s ) / ( np \ ( 0 s ) 0 ) ◦ (( np \ s ) /np ◦ np )) ⊢ s 1 s 2 ⊢ ✷ ↓ ✸ s ( qL ) ◦ (( np \ s ) / ( np \ ( 0 s ) 0 ) )) ⊢ ✷ ↓ ✸ s np ◦ (( np \ s ) /np ◦ q ( np, s 1 , s 2 ) ���� � �� � � �� � � �� � see John didn’t GQ ◮ GQ: some student s 2 = ✷ ↓ ✸ s ✷ ↓ ✸ s ⊢ ✷ ↓ ✸ s ; ( 0 s ) 0 �⊢ ✷ ↓ ✸ s . ◮ GQ: any student s 2 = ( 0 s ) 0 Contents First Last Prev Next ◭

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend