galaxy formation and evolution hubble s legacy
play

Galaxy Formation and Evolution: Hubbles Legacy ! achel somervi - PowerPoint PPT Presentation

Galaxy Formation and Evolution: Hubbles Legacy ! achel somervi " e # $ utgers Universi %# high resolution deep imaging surveys HDF (N&S) GOODS GE MS HUDF AE GI S COSMOS CL ASH HST a llo ws us to study a nd disse c t g a


  1. Galaxy Formation and Evolution: Hubble’s Legacy ! achel somervi " e # $ utgers Universi %#

  2. high resolution deep imaging surveys HDF (N&S) GOODS GE MS HUDF AE GI S COSMOS CL ASH

  3. HST a llo ws us to study a nd disse c t g a la xy struc tura l pro pe rtie s fo r statistic ally ro bust sample s : • size (e ffe c tive ra dius) • sha pe o f lig ht pro file (Se rsic ) • lig ht c o nc e ntra tio n • fra c tio n o f lig ht in a ‘ sphe ro id’ vs. ‘ disk’ (“b ulg e -disk de c o mpo sitio n”) • c o lo r g ra die nts c a n e ve n c o nstruc t ste llar mass maps ste lla r ma ss we ig hte d e ffe c tive ra dius B/ T , Se rsic , e tc … Szo mo ru e t a l. 2012

  4. global and structural properties are correlated z~0 (to da y) • disk-do mina te d ra te o f ne w sta rb irth pe r unit ste lla r ma ss g a la xie s te nd to lie o n a fa irly tig ht “sta r- fo rming se q ue nc e ” • sphe ro id-do mina te d g a la xie s te nd to b e ‘ q uie sc e nt’ ste lla r ma ss Brinc hma nn e t a l. 2003 ( K a uffma nn e t a l. 2003 )

  5. • this SF se q ue nc e inc re a se s in its no rma liza tio n, b ut re ma ins ra the r tig ht, up to hig h re dshift (z~4-6? ) • a distinc t q uie sc e nt po pula tio n c a n b e ide ntifie d up to a t le a st z~2 z~0 z~1 z~2 Cia mb ur e t a l. 2013 ste lla r ma ss a sse mb ly b uild-up o f the q uie sc e nt po pula tio n ma ss o n the SF se q ue nc e ~c o nsta nt sinc e z~2 Muzzin e t a l. 2013

  6. • a ltho ug h g a la xy de mo g ra phic s ha ve c ha ng e d ra the r dra ma tic a lly sinc e ‘ c o smic hig h no o n’ , the se c o rre la tio ns se e m to ha ve re ma ine d q ua lita tive ly simila r disk-like sphe ro id-like Wuyts e t a l. 2011 se e a lso Be ll e t a l. 2008, 2012; Che ung +’ 12; F a ng +‘ 13

  7. • q uie sc e nt g a la xie s mo re c o mpa c t • SF g a la xie s mo re e xte nde d • size s e vo lve mo re ra pidly • size s e vo lve slo wly • ma ss-de pe nde nt size e vo lutio n (struc tura l • se lf-simila r size e vo lutio n do wnsizing ) sta r-fo rming q uie sc e nt va n de r We l e t a l. sub mitte d

  8. Big Questions • why do we see two populations ( spheroids & disks )? • why is star formation abruptly quenched in some galaxies? • how are the correlations between global and structural properties imprinted on galaxies? • what physical processes are driving the evolution of global and structural properties?

  9. z=5.7 (t=1.0 Gyr) mass assembly in a hierarchical universe z=1.4 (t=4.7 Gyr) z=0 (t=13.6 Gyr) Hirsc hma nn e t a l. 2012 Mille nnium Simula tio n

  10. massive stars & SNae AGN feedback heating and winds heating & winds photoionization/ gravitational photoevaporation heating no HI cooling halo mass (M sun )

  11. The Angular Momentum Catastrophe spe c ific a ng ula r mo me ntum Na va rro & Ste inme tz 2001; ro ta tio n ve lo c ity Ab a di e t a l. 2003

  12. Gue de s e t a l. 2011; se e a lso e .g . Bro o ks e t a l. 2011 Christe nse n e t a l. 2012

  13. a ng ula r mo me ntum c a ta stro phe so lve d (? ) – c o mb ina tio n o f re so lutio n, mo re physic a l tre a tme nt o f I SM, sta r fo rma tio n, ste lla r fe e db a c k GASOL I NE simula tio n inc luding me ta l c o o ling , Christe nse n e t a l. 2012 H 2 c he mistry & simplifie d ra dia tive tra nsfe r

  14. Aq uila Pro je c t Sc a nna pie c o e t a l. 2011

  15. Clumpy disks at z~2 c a n simula tio ns pro duc e the rig ht numb e r o f c lumpy g a la xie s & ‘ c lump sta tistic s’ a t z~2 a nd simulta ne o usly re pro duc e MW-like disks a t z~0? Y . Guo +CANDE L S in pre p

  16. Me rg e rs a nd `Disk I nsta b ilitie s ’ Ceverino et al. 2012 [dry or moist] major mergers transform disks into • spheroids – ‘wet’ (gas rich) may reform into a disk minor mergers scatter stars from disk and add to spheroid • bar instabilities can build (pseudo?) spheroids • ‘violent disk instabilities’ fueled by rapid ‘stream-fed’ • accretion at high-z may lead to Violent Disk Instabilities , building a classical bulge these processes may also be responsible for driving gas • onto a supermassive black hole Co x e t a l. 2006

  17. sphe ro ids fo rm e a rlie r a nd mo re e ffic ie ntly in mo de ls with “Disk insta b ilitie s” Po rte r , rss, Prima c k & Jo ha nsso n sub mitte d

  18. galaxy structure & quenching: z~2 se mi-a na lytic mo de l lo g Bre nna n, Pa ndya , rss e t a l. in pre p

  19. galaxy morphology & quenching: z~1 se mi-a na lytic mo de l Bre nna n, Pa ndya , rss e t a l. in pre p

  20. Wuyts e t a l. 2011 o b se rva tio ns disk insta b ilitie s o ff disk insta b ilitie s o n Bre nna n, Pa ndya , rss e t a l. in pre p

  21. simple model for understanding disk sizes d ~ λ r r H f(c , λ , f d ) • smo o thly a c c re te d g a s ~ c o nse rve s its a ng ula r mo me ntum • de nsity pro file g e ts mo difie d a b it b y ‘ b a ryo nic c o ntra c tio n’ Blume ntha l e t a l. 1986 Da lc a nto n e t a l. 1997 Mo , Ma o & White 1998 So me rville e t a l. 2008

  22. simple model for spheroid sizes Orbital parameters, ! gas fraction, mass ratio ! fo rm fa c to rs c a lib ra te d fro m SPH simula tio ns o f b ina ry ide a lize d g a la xy me rg e rs (Co x e t a l.; Jo ha nnso n e t a l. 2009) ‘ dry’ me rg e rs pro duc e re mna nts tha t a re la rg e r + in ra dius tha n the ir pro g e nito rs ‘ we t’ me rg e rs pro duc e re mna nts tha t a re mo re + c o mpa c t tha n the ir pro g e nito rs L a ure n Po rte r UCSC PhD T he sis with J. Prima c k; se e a lso Co ving to n e t a l. 2008; 2011 Po rte r , rss e t a l. MN sub mitte d

  23. o b se rva tio ns fro m va n de r We l e t a l. (sub mitte d) rss, Po rte r+CANDE L S in pre p;

  24. Co smo lo g ic a l hydro dyna mic a l “zo o m-in” simula tio ns inc luding AGN fe e db a c k (the rma l, ra dia tive , a nd me c ha nic a l) 20 ha lo s (1.1E 12<M h (z=0)<1.0E 13) M sun (8.9E 10<M * (z=0)<1.0E 12) M sun sta r a nd g a s pa rtic le s 6E 06 M sun DM pa rtic le s 3.6E 07 M sun c o mo ving so fte ning 571 pc E . Cho i e t a l. a rXiv:1403.1257

  25. looking ahead… kinematics with new generation of ! Integral Field Spectrographs ! Ca ppe lla ri e t a l. 2011 black hole masses with ! 20m space telescope ! cold gas content with ALMA !

  26. What have we learned? – part I • quenching of star formation in galaxies is accompanied by structural and morphological transformation -- star-forming and quiescent galaxies grow at different rates • studying the evolution of galaxy structure provides invaluable constraints on ‘sub-grid physics’…greatest uncertainty in theoretical modeling.

  27. What have we learned?– part II • to first order, the following picture appears qualitatively consistent with the observations: – disk sizes set by angular momentum content of smoothly accreted gas – some process(es) [mergers? ‘disk instabilities’?] cause gas to lose angular momentum, fall to the center, make new stars, and feed a central SMBH – AGN feedback clears gas out and prevents further cooling – ‘quenched’ galaxies grow further primarily via ‘dry’ mergers/cannabalism

  28. Puzzles (an incomplete list) what determines the angular momentum distribution of the baryons in galactic disks? • can stellar-driven winds preferentially remove low-angular momentum material? what implications does this have for disk size evolution and disk profiles? how do spheroids form and grow? what is the relative role of mergers, secular • evolution, violent disk instabilities, low J accretion, other? can we reproduce the observed distribution of galaxy morphologies, from pure disks to pure spheroids? is ‘AGN feedback’ really the primary mechanism for stopping gas accretion and • quenching star formation? what are the relative roles of “bright mode” vs. “radio mode”? how and why does matter accrete onto supermassive black holes? do the above • processes all lead to the same spheroid/BH mass ratio? how is “feeding” on kpc scales connected with feeding on sub-pc scales?

  29. Thank you ! �

  30. What can we learn about the physics of galaxy formation and evolution from galaxy structure?

  31. • c urre nt mo de ls do o k (tho ug h no t g re a t) a t re pro duc ing the fra c tio n o f SF vs. q uie sc e nt g a la xie s a s a func tio n o f ste lla r ma ss up to z~1.5 • mo de ls se e m to unde rpro duc e q uie sc e nt a nd sphe ro id-do mina te d g a la xie s a t z>1.5 • this pro b le m is muc h mo re se ve re in mo de ls in whic h sphe ro ids a re fo rme d o nly in me rg e rs. mo de l sho wn inc lude s ‘disk instabilitie s’ CANDE L S Ultra VI ST A mo de l mo de l, c e ntra ls o nly Bre nna n e t a l. in pre p; o b se rva tio ns fro m L a ng , Wuyts e t a l. in pre p; Muzzin e t a l. 2013

  32. b o lo me tric AGN lumino sity func tio n the se sa me mo de ls pre dic t numb e r de nsitie s o f “b rig ht” a c c re ting BH a s a func tio n o f lumino sity a nd o ve r c o smic time tha t a re c o nsiste nt with o b se rva tio ns Hirschmann, rss et al. 2012

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend