galactic cosmic rays gcr and dark matter indirect
play

Galactic cosmic rays (GCR) and dark matter indirect detection - PowerPoint PPT Presentation

Galactic cosmic rays (GCR) and dark matter indirect detection Group: DARK (AMS-CREAM-LSST) Research activity: phenomenology 1. Introduction : GCRs, dark matter indirect detection 2. Recent results and interpretation 3. Research activities at


  1. Galactic cosmic rays (GCR) and dark matter indirect detection Group: DARK (AMS-CREAM-LSST) Research activity: phenomenology 1. Introduction : GCRs, dark matter indirect detection 2. Recent results and interpretation 3. Research activities at LPSC and 2-year goals - Solar modulation - GCR interpretation - Dark matter indirect detection David Maurin CS LPSC (LPSC) 16 Dec. 2016 dmaurin@lpsc.in2p3.fr

  2. 1. Introduction: GCR propagation and standard astrophysics (plasma physics) (nuclear physics) Galactic Tycho's SNR wind p, He, C R ☼ ~ 8 kpc p, d, e + , B (astrophysics + particle physics)

  3. 1. Introduction: GCR propagation and dark matter (plasma physics) (nuclear physics) Galactic Tycho's SNR wind p, He, C R ☼ ~ 8 kpc p, d, e + p, d, e + , B (astrophysics + particle physics) Indirect detection Direct detection Universe (after Planck) Milky-Way dark matter halo Dark ● 68.3 % dark energy Standard ● ~ spherical halo ● 26.8 % dark matter matter matter ● radius ~300 kpc ● 4.9 % ordinary matter Production (colliders)

  4. 1. Introduction: dark matter indirect detection in γ -rays Dense (~ ∫ ρ 2 ) – Close (1/d 2 ) – No astrophysical background In the Milky-Way Galactic centre (diffuse emission) Dwarf spheroidal galaxies 8 kpc ~300 kpc ΔΩ Dark micro-halos Outside the Galaxy Milky-Way clusters Extragalactic diffuse emission

  5. 1. Introduction: from lowest to highest energies Impact of Solar Galactic modulation AMS ISS- CREAM Extragalactic → CR sources and transport? → Origin of spectral features, composition, anisotropy? → Transition galactic/extragalactic?

  6. 1. Introduction: Galactic cosmic rays (~10 8 -10 15 eV) Elemental composition Beringer et al., PRD 86, 010001 (2012) p, He, diffuse γ -rays, antiprotons, e - , and e + Beischer et al. (2009) e - p e + He γ _ p → Transport parameters → Dark matter indirect detection → Acceleration mechanisms: injection, efficiency, ... → Transport: diffusion, convection, energy gain and losses... → CR anisotropy δ <10 -3 ( ≠ E and species)

  7. 1. Introduction : GCRs, dark matter indirect detection 2. Recent results and interpretation 3. Research activities at LPSC and 2-year goals - Solar modulation - GCR interpretation - Dark matter indirect detection

  8. 2. Recent results: positron fraction and antiprotons Aguilar et al., PRL 110, 1102 (2013) Accardo et al., PRL 113, 121101 (2014) Kappl et al., JCAP 09, 023 (2015) Solar modulation effect Positron fraction, e - , e + and e - +e + spectra used to test astrophysical and/or dark matter hypothesis Antiprotons ● Contribution from local SNRs/pulsars? → e.g., Delahaye et al., A&A 524, A51 (2010) → Seems consistent with astrophysics only ● Dark matter hypothesis? → e.g., Boudaud et al., A&A 575, 67 (2015) [N.B.: no boost, Lavalle et al., A&A 479, 427 (2008)] N.B.: see also e- and e+ in Aguilar et al., PRL 113, 121102 (2014)

  9. 2. Recent results: p, He, and B/C Aguilar et al., PRL 114, 171103 (2015) Aguilar et al., PRL 115, 211101 (2015) Spectral break Different slopes at ~ 350 GV γ p − γ He >0.1 for p and He

  10. 2. Recent results: p, He, and B/C Aguilar et al., PRL 114, 171103 (2015) Aguilar et al., PRL 115, 211101 (2015) Spectral break Different slopes at ~ 350 GV γ p − γ He >0.1 for p and He Aguilar et al., PRL 117, 231102 (2016) Asymptotically Kolmogorov → Need to explore slope for other primary (C, O) and secondary (Li, Be, B) species

  11. 2. Recent results: possible interpretations N.B.: Different diffusion coefficient in the disk and halo [self-generated turbulence vs pre-existing turbulence, or different damping mechanisms in different medium?] Aloisio et al., A&A 583, A95 (2015) Many others explanations: ● Secondary production at source (for positrons), single or multiple local sources, ... ● Reacceleration, spiral arm structure, time and spatial discretness...

  12. 1. Introduction : GCRs, dark matter indirect detection 2. Recent results and interpretation 3. Research activities at LPSC and 2-year goals - Solar modulation - GCR interpretation - Dark matter indirect detection

  13. 3. Research activities at LSPC: GCR tools and studies Time-independent Galactic 4) Top-of-Atmosphere to sea level Time-dependent Cosmic 1) Transport in the Galaxy Rays ISS ( h~400 km) 3) Earth magnetic shield Atm. ~ 0 g cm -2 size ~ 30 kpc <t> ~ 20 Myr size ~ 10 4 km 2) Transport in Solar cavity size ~ 100 AU <t> ~ few years Balloon ( h~40 km) Atm. ~ 5 g cm -2 x 10 7 x 10 5 Neutron monitor ( h<2 km) Atm. ~ 600-1000 g cm -2

  14. 3. Research activities at LSPC: CR database and φ (t) Time-independent Galactic 4) Top-of-Atmosphere to sea level Time-dependent Cosmic 1) Transport in the Galaxy Rays ISS ( h~400 km) 3) Earth magnetic shield Atm. ~ 0 g cm -2 size ~ 30 kpc <t> ~ 20 Myr size ~ 10 4 km 2) Transport in Solar cavity size ~ 100 AU <t> ~ few years Balloon ( h~40 km) Atm. ~ 5 g cm -2 x 10 7 x 10 5 CR database and φ time series (https://lpsc.in2p3.fr/crdb/): ~90000 requests from 90 countries Support F. Melot (service informatique) Neutron monitor ( h<2 km) A. Ghelfi (PhD thesis) Atm. ~ 600-1000 g cm -2

  15. 3. Research activities at LSPC: Cosmic-Ray DataBase Time-independent Galactic 4) Top-of-Atmosphere to sea level Time-dependent Cosmic 1) Transport in the Galaxy Rays ISS ( h~400 km) 3) Earth magnetic shield Atm. ~ 0 g cm -2 size ~ 30 kpc <t> ~ 20 Myr size ~ 10 4 km 2) Transport in Solar cavity size ~ 100 AU <t> ~ few years Balloon ( h~40 km) Atm. ~ 5 g cm -2 x 10 7 x 10 5 Public codes ● USINE, a propagation code ● GreAT (http://lpsc.in2p3.fr/great), an MCMC engine Neutron monitor ( h<2 km) A. Ghelfi, PhD thesis AMS-02 data interpretation Atm. ~ 600-1000 g cm -2 - Origin of p/He anomaly - Two-halo propagation scenario - Impact of nuclear uncertainties - ... N. Tomassetti (post-doc) Tomassetti (post-doc)

  16. 3. Research activities at LSPC: γ -rays best targets and CTA CLUMPY public code (http://lpsc.in2p3.fr/clumpy/) V. Bonnivard (PhD thesis), C. Combet, M. Hütten (PhD student@DESY) Triaxial dark matter halo Dwarf spheroidal + galaxies Dark micro-halos Angular resolution = 0.12° (HEALPix Nside=512) → Best analysis for dwarf spheroidal ranking (crucial for Fermi-LAT constraints) → Ranking and stacking strategy for galaxy clusters (Fermi-LAT and CTA) → Dark clump sensitivity for CTA

  17. 3. Research activities at LPSC: evolution and goals N.B.: co-supervised theses (within the group) analysis/phenomenology ~2009-2012 2013-2016 2017-2018 Stages M2 ● A. Coulon (2011) : 50% ● V. Bonnivard (2013) : 50% ● M. Vauthrin (2012) : 50% ● A. Ghelfi (2013) : 50% ● V. Bonnivard (2013-16) : 70% Theses ● A. Putze (2006-09) : 70% ● A. Ghelfi (2013-16) : 50% ● B. Coste (2009-12) : 30% ● S. Aupetit (2015-2018) : 50% ● S. Aupetit (2015-18) : 50% Post-Docs ● N. Tomassetti (2013-2016) : 50% Staff ● D. Maurin (CR) : 100% ● D. Maurin (CR) : 100% ● D. Maurin (CR) : 100% ● L. Derome (Prof.) : 20% ● C. Combet (CR) : 20% ● C. Combet (CR) : 20% ● J. Bregeon (visitor) : 10% Pipex index GCR: 5 pubs (260 citations) GCR: 13 pubs (105 citations) γ -rays: 6 pubs (166 citations) γ -rays: 7 pubs (95 citations) + UK/US/Germany/France collaborations

  18. 3. Research activities at LPSC: evolution and goals N.B.: co-supervised theses (within the group) analysis/phenomenology ~2009-2012 2013-2016 2017-2018 Stages M2 ● A. Coulon (2011) : 50% ● V. Bonnivard (2013) : 50% ● M. Vauthrin (2012) : 50% ● A. Ghelfi (2013) : 50% ● V. Bonnivard (2013-16) : 70% Theses ● A. Putze (2006-09) : 70% ● A. Ghelfi (2013-16) : 50% ● B. Coste (2009-12) : 30% ● S. Aupetit (2015-2018) : 50% ● S. Aupetit (2015-18) : 50% Post-Docs ● N. Tomassetti (2013-2016) : 50% Staff ● D. Maurin (CR) : 100% ● D. Maurin (CR) : 100% ● D. Maurin (CR) : 100% ● L. Derome (Prof.) : 20% ● C. Combet (CR) : 20% ● C. Combet (CR) : 20% ● J. Bregeon (visitor) : 10% Pipex index GCR: 5 pubs (260 citations) GCR: 13 pubs (105 citations) γ -rays: 6 pubs (166 citations) γ -rays: 7 pubs (95 citations) + UK/US/Germany/France collaborations Solar modulation S. Aupetit (PhD student) → Better Solar modulation model + time-dependent AMS data GCR interpretation → B/C, Li, pbar, etc.: collaboration with LAPTh DM and γ -rays → Extragalactic contribution (M. Hütten 3 months visit)

  19. GCR propagation: from microphysics to diffusion [Adapted from R. Tautz (CRISM 2014)] ● Physics problem: motion in a turbulent field ● Ansatz: diffusion equation Analytical calculation Numerical simulations - Mean free path Reality: resonant wave-particle interaction with stochastic motion... turbulence model requires: Pitch angle µ =cos( v , B 0 ) ● Energy spectrum (diff.eq. for wave!): W k -s ● Geometry - Fokker-Planck coefficient ● Dynamical behaviour Taylor-Green-Kubo formula - Instabilities - Damped waved - Equation of motion (Lorentz) - Intermittency Unknown v x,y , unknown position in δ B x,y Diffusion in MHD → Can only be solved in ideal situations turbulence ● Quasi-Linear Theory ( δ B ≪ B): QLT ● 2 nd order QLT: SOQLT ● Non-linear guiding centre: NLGC

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend