from display calculi to decision procedures for full
play

From Display Calculi to Decision Procedures for Full Intuitionistic - PowerPoint PPT Presentation

From Display Calculi to Decision Procedures for Full Intuitionistic Linear Logic Ranald Clouston, Jeremy Dawson, Rajeev Gor e, Alwen Tiu Logic and Computation Group Research School of Computer Science The Australian National University


  1. From Display Calculi to Decision Procedures for Full Intuitionistic Linear Logic Ranald Clouston, Jeremy Dawson, Rajeev Gor´ e, Alwen Tiu Logic and Computation Group Research School of Computer Science The Australian National University rajeev.gore@anu.edu.au December 14, 2013 Published in Proc. 22nd EACSL Annual Conference on Computer Science Logic, Turin September 2013 as “Annotation-free sequent calculi for Full Intuitionistic Linear Logic”

  2. Overview What is FILL? Existing sequent calculi A Display Calculus for FILL Nested Sequent Calculus for FILL Separation Decidability and Complexity Further Work

  3. Full Intuitionistic Linear Logic LL : modal substructural logic without weakening and without contraction ⊗ , ⊕ , 1 , 0 , ⊸ , ∧ , ∨ , ⊤ , ⊥ , ! , ? Girard 1987 MALL : ⊗ , ⊕ , 1 , 0 , ⊸ , ∧ , ∨ , ⊤ , ⊥ drop exponentials MILL : ⊗ , 1 , ⊸ intuitionistic MLL : ⊗ , 1 , ⊸ , ⊕ , 0 classical (( A ⊸ 0 ) ⊸ 0 ) ⊸ A FILL : ⊗ , 1 , ⊸ , ⊕ , 0 Hyland and de Paiva 1993

  4. Categorial Semantics for FILL ( ⊗ , 1 , ⊸ ) is a symmetric monoidal closed structure A ⊗ B ⊸ C iff A ⊸ ( B ⊸ C ) iff B ⊸ ( A ⊸ C ) ( A ⊗ 1 ) ⊸ A and A ⊸ ( A ⊗ 1 ) ( ⊕ , 0 ) is a symmetric monoidal structure ( A ⊕ B ) ⊸ ( B ⊕ A ) ( A ⊕ 0 ) ⊸ A and A ⊸ ( A ⊕ 0 ) interaction via either of weak distributivity (( A ⊗ B ) ⊕ C ) ⊸ ( A ⊗ ( B ⊕ C )) Grishin(b) (( A ⊸ B ) ⊕ C ) ⊸ ( A ⊸ ( B ⊕ C )) Collapse to (classical) MLL: if we add converse of Grishin(b) Grishin(a) ( A ⊸ ( B ⊕ C )) ⊸ (( A ⊸ B ) ⊕ C )

  5. Proof Theory of Full Intuitionistic Linear Logic LL : substructural logic without weakening and without contraction MILL ⊗ ⊸ 1 intuitionistic cut-elimination Γ 1 ⊢ A Γ 2 ⊢ B Γ , A ⊢ B Γ 1 , Γ 2 ⊢ A ⊗ B Γ ⊢ A ⊸ B ⊗ 1 ⊕ ⊥ classical cut-elimination MLL ⊸ Γ 1 , A ⊢ B , ∆ 1 Γ 2 , A ⊢ B , ∆ 2 Γ ⊢ A , B , ∆ Γ , A ⊢ B , ∆ Γ 1 , Γ 2 ⊢ ∆ 1 , A ⊗ B , ∆ 2 Γ ⊢ A ⊕ B , ∆ Γ ⊢ A ⊸ B , ∆ FILL ⊗ ⊸ 1 ⊕ ⊥ intuitionistic cut-elimination fails Γ 1 , A ⊢ B , ∆ 1 Γ 2 , A ⊢ B , ∆ 2 Γ ⊢ A , B , ∆ Γ , A ⊢ B Γ 1 , Γ 2 ⊢ ∆ 1 , A ⊗ B , ∆ 2 Γ ⊢ A ⊕ B , ∆ Γ ⊢ A ⊸ B , ∆

  6. Problem and a solutions via annotated derivations Remember: we need comma on the right to accommodate ⊕ Problem and existing solutions: multiple conclusions single conclusion existing solutions Γ , A ⊢ B , ∆ Γ , A ⊢ B Γ , A ⊢ B , ∆ ( † ) Γ ⊢ A ⊸ B , ∆ Γ ⊢ A ⊸ B , ∆ Γ ⊢ A ⊸ B , ∆ unsound no cut-elimination cut-elimination † : side-conditions which ensure that A is “independent” of ∆ Hyland, de Paiva 1993: type assignments to ensure that the variable typed by A not appear free in the terms typed by ∆

  7. Further problems and solutions using annotations Γ , A ⊢ B , ∆ ( † ) Hyland and de Paiva 1993: Γ ⊢ A ⊸ B , ∆ † : side-conditions which ensure that A is “independent” of ∆ Bierman 1996: ( a ⊕ b ) ⊕ c ⊢ a , (( b ⊕ c ) ⊸ d ) ⊕ ( e ⊸ ( d ⊕ e )) has no cut-free derivation in the Hyland and de Paiva calculus Bierman, Bellin 1996: refined annotations to regain cut-elimination Br¨ auner and de Paiva 1997: annotate rules with a binary relation between antecedent formulae and succedent formulae, which effectively trace variable occurrence What do derivations look like ?

  8. Hyland , de Paiva and Biermann ( ⊸ R ) legal as v and ( w ⊕ x ⊸ y ) ⊕ z share no free variables. v : a ⊢ v : a w : b ⊢ w : b v ⊕ w : a ⊕ b ⊢ v : a , w : b x : c ⊢ x : c ( v ⊕ w ) ⊕ x : ( a ⊕ b ) ⊕ c ⊢ v : a , w : b , x : c ( v ⊕ w ) ⊕ x : ( a ⊕ b ) ⊕ c ⊢ v : a , w ⊕ x : b ⊕ c y : d ⊢ y : d ( v ⊕ w ) ⊕ x : ( a ⊕ b ) ⊕ c , w ⊕ x ⊸ y : b ⊕ c ⊸ d ⊢ v : a , y : d z : e ⊢ z : e ( v ⊕ w ) ⊕ x : ( a ⊕ b ) ⊕ c , ( w ⊕ x ⊸ y ) ⊕ z : ( b ⊕ c ⊸ d ) ⊕ e ⊢ v : a , y : d , z : e ( v ⊕ w ) ⊕ x : ( a ⊕ b ) ⊕ c , ( w ⊕ x ⊸ y ) ⊕ z : ( b ⊕ c ⊸ d ) ⊕ e ⊢ v : a , y ⊕ z : d ⊕ e ( v ⊕ w ) ⊕ x : ( a ⊕ b ) ⊕ c ⊢ v : a , λ ( w ⊕ x ⊸ y ) ⊕ z ( b ⊕ c ⊸ d ) ⊕ e . ( y ⊕ z ) : ( b ⊕ c ⊸ d ) ⊕ e ⊸ d ⊕ e But the type annotations have no computational content

  9. Bellin-style Proof ( ⊸ R ) is legal because r is not free in let t be u ⊕ - in let u be v ⊕ - in v v : a ⊢ v : a w : b ⊢ w : b u : a ⊕ b ⊢ let u be v ⊕ - in v : a , let u be - ⊕ w in w : b x : c ⊢ x : c a ⊕ b ) ⊕ c ⊢ let t be u ⊕ - in let u be v ⊕ - in v : a , let t be u ⊕ - in let u be - ⊕ w in w : b , let t be - ⊕ x in x : c b ) ⊕ c ⊢ let t be u ⊕ - in let u be v ⊕ - in v : a , (let t be u ⊕ - in let u be - ⊕ w in w ) ⊕ (let t be - ⊕ x in x ) : b ⊕ c y : d ⊢ a ⊕ b ) ⊕ c , s : b ⊕ c ⊸ d ⊢ let t be u ⊕ - in let u be v ⊕ - in v : a , ( s (let t be u ⊕ - in let u be - ⊕ w in w ) ⊕ (let t be - ⊕ x in x )) , r : ( b ⊕ c ⊸ d ) ⊕ e ⊢ let t be u ⊕ - in let u be v ⊕ - in v : a , let r be s ⊕ - in ( s (let t be u ⊕ - in let u be - ⊕ w in w ) ⊕ (let t be - : ( b ⊕ c ⊸ d ) ⊕ e ⊢ let t be u ⊕ - in let u be v ⊕ - in v : a , (let r be s ⊕ - in ( s (let t be u ⊕ - in let u be - ⊕ w in w ) ⊕ (let t be - ⊕ u ⊕ - in let u be v ⊕ - in v : a , λ r ( b ⊕ c ⊸ d ) ⊕ e . (let r be s ⊕ - in ( s (let t be u ⊕ - in let u be - ⊕ w in w ) ⊕ (let t be - ⊕ x in x ))) ⊕ (let Again, the type annotations are not given any computational content and this derivation does not even fit on the page!

  10. Br¨ auner and de Paiva-style proof ( ⊸ R ) legal because ( b ⊕ c ⊸ d ) ⊕ e is not related to a ( a , a ) ( b , b ) a ⊢ a b ⊢ b ( a ⊕ b , a ) , ( a ⊕ b , b ) ( c , c ) a ⊕ b ⊢ a , b c ⊢ c c , b ) , (( a ⊕ b ) ⊕ c , c ) ( a ⊕ b ) ⊕ c ⊢ a , b , c ⊕ c , a ) , (( a ⊕ b ) ⊕ c , b ⊕ c ) ( d , d ) ( a ⊕ b ) ⊕ c ⊢ a , b ⊕ c d ⊢ d ⊕ b ) ⊕ c , d ) , ( b ⊕ c ⊸ d , d ) ( e , e ) ( a ⊕ b ) ⊕ c , b ⊕ c ⊸ d ⊢ a , d e ⊢ e ⊕ c ⊸ d ) ⊕ e , d ) , (( b ⊕ c ⊸ d ) ⊕ e , e ) ( a ⊕ b ) ⊕ c , ( b ⊕ c ⊸ d ) ⊕ e ⊢ a , d , e a ) , (( a ⊕ b ) ⊕ c , d ⊕ e ) , (( b ⊕ c ⊸ d ) ⊕ e , d ⊕ e ) ( a ⊕ b ) ⊕ c , ( b ⊕ c ⊸ d ) ⊕ e ⊢ a , d ⊕ e ⊕ c , a ) , (( a ⊕ b ) ⊕ c , ( b ⊕ c ⊸ d ) ⊕ e ⊸ d ⊕ e ) ( a ⊕ b ) ⊕ c ⊢ a , ( b ⊕ c ⊸ d ) ⊕ e ⊸ d ⊕ e Pure annotational device to track variable occurrences

  11. Cut-free derivation in our display calculus a ⊢ a b ⊢ b a ⊕ b ⊢ a , b c ⊢ c ( a ⊕ b ) ⊕ c ⊢ a , b , c ( a ⊕ b ) ⊕ c < a ⊢ b , c ( a ⊕ b ) ⊕ c < a ⊢ b ⊕ c d ⊢ d b ⊕ c ⊸ d ⊢ (( a ⊕ b ) ⊕ c < a ) > d e ⊢ e ( b ⊕ c ⊸ d ) ⊕ e ⊢ ((( a ⊕ b ) ⊕ c < a ) > d ) , e ( b ⊕ c ⊸ d ) ⊕ e ⊢ (( a ⊕ b ) ⊕ c < a ) > d , e ( b ⊕ c ⊸ d ) ⊕ e , (( a ⊕ b ) ⊕ c < a ) ⊢ d , e ( b ⊕ c ⊸ d ) ⊕ e , (( a ⊕ b ) ⊕ c < a ) ⊢ d ⊕ e ( a ⊕ b ) ⊕ c < a ⊢ ( b ⊕ c ⊸ d ) ⊕ e > d ⊕ e ( a ⊕ b ) ⊕ c < a ⊢ ( b ⊕ c ⊸ d ) ⊕ e ⊸ d ⊕ e ( a ⊕ b ) ⊕ c ⊢ a , ( b ⊕ c ⊸ d ) ⊕ e ⊸ d ⊕ e No annotations, but many extra structural connectives

  12. Cut-free derivation in the deep nested calculus · ⇒ ( b ⇒ b ) a ⇒ a , ( · ⇒ · ) b ⇒ ( · ⇒ b ) · ⇒ ( c ⇒ c ) a ⊕ b ⇒ a , ( · ⇒ b ) c ⇒ ( · ⇒ c ) ( a ⊕ b ) ⊕ c ⇒ a , ( · ⇒ b , c ) ( a ⊕ b ) ⊕ c ⇒ a , ( · ⇒ b ⊕ c ) · ⇒ ( d ⇒ d ) ( a ⊕ b ) ⊕ c ⇒ a , ( b ⊕ c ⊸ d ⇒ d ) · ⇒ ( e ⇒ e ) ( a ⊕ b ) ⊕ c ⇒ a , (( b ⊕ c ⊸ d ) ⊕ e ⇒ d , e ) ( a ⊕ b ) ⊕ c ⇒ a , (( b ⊕ c ⊸ d ) ⊕ e ⇒ d ⊕ e ) ( a ⊕ b ) ⊕ c ⇒ a , ( b ⊕ c ⊸ d ) ⊕ e ⊸ d ⊕ e No annotations, only commas as structural connective, but sequents are nested ( · · · ⇒ · · · ) · · · ⇒ · · · ( · · · ⇒ · · · )

  13. Display calculus for (an extension of) FILL Structural Constant and Binary Connectives: Φ , < > Antecedent Structure: X a Y a ::= A | Φ | X a , Y a | X a < Y s Succcedent Structure: X s Y s ::= A | Φ | X s , Y s | X a > Y s Sequent: X a ⊢ Y s (drop subscripts to avoid clutter) Display Postulates: reversible structural rules X a ⊢ Y a > Z s Z a < Y s ⊢ X s X a , Y a ⊢ Z s Z a ⊢ X s , Y s Y a ⊢ X a > Z s Z a < X s ⊢ Y s Display Property: For every antecedent (succedent) part Z of the sequent X ⊢ Y , there is a sequent Z ⊢ Y ′ (resp. X ′ ⊢ Z ) obtainable from X ⊢ Y using only the display postulates, thereby displaying the Z as the whole of one side

  14. Logical rules: introduced formula is always displayed X ⊢ A A ⊢ Y (cut) (id) p ⊢ p X ⊢ Y Φ ⊢ X ( 1 ⊢ ) ( ⊢ 1 ) Φ ⊢ 1 1 ⊢ X X ⊢ Φ ( ⊢ 0 ) ( 0 ⊢ ) 0 ⊢ Φ X ⊢ 0 A , B ⊢ X X ⊢ A Y ⊢ B ( ⊢ ⊗ ) ( ⊗ ⊢ ) X , Y ⊢ A ⊗ B A ⊗ B ⊢ X X ⊢ A , B A ⊢ X B ⊢ Y ( ⊕ ⊢ ) ( ⊢ ⊕ ) A ⊕ B ⊢ X , Y X ⊢ A ⊕ B X ⊢ A > B X ⊢ A B ⊢ Y ( ⊸ ⊢ ) ( ⊢ ⊸ ) A ⊸ B ⊢ X > Y X ⊢ A ⊸ B A < B ⊢ X X ⊢ A B ⊢ Y ( − < ⊢ ) ( ⊢ − < ) A − < B ⊢ X X < Y ⊢ A − < B read upwards, one rule is a “rewrite” while other “constrains”

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend