from classical circuits to quantum circuits alexis de vos
play

From classical circuits to quantum circuits Alexis De Vos and Stijn - PDF document

From classical circuits to quantum circuits Alexis De Vos and Stijn De Baerdemacker Waterloo, 9 June 2015 Un bonjour de Waterloo, Belgique pour Waterloo, Ontario


  1. From classical circuits to quantum circuits Alexis De Vos and Stijn De Baerdemacker Waterloo, 9 June 2015

  2. ✬ ✩ Un bonjour de Waterloo, Belgique pour Waterloo, Ontario ✫ ✪ ❅ ❆ ❅ ❆ ❅ ❆ ❅ ❆ ❅ ❆ ❅ ❆ ❅ ❆ ❅ ❆ ❆ ❅ ❆ ❅ ❅ ❆ ❆ ❆ ❆ ❆ ❆ ❆ ❆ ❆ ❆ ❆

  3. From classical circuits to quantum circuits Alexis De Vos and Stijn De Baerdemacker

  4. U( n ) = the unitary group = the group of n × n unitary matrices

  5. U( n ) = the unitary group = the group of n × n unitary matrices U(2 w ) = the quantum circuits acting on w qubits

  6. U( n ) = the unitary group = the group of n × n unitary matrices U(2 w ) = the quantum circuits acting on w qubits Thus: U(2) = the quantum circuits acting on 1 qubit = the group of 2 × 2 unitary matrices

  7. Single-qubit circuits � 1 0 � I = 0 1

  8. Single-qubit circuits � 1 0 � I = 0 1 Two square roots: � 0 1 � X = 1 0 and � 1 � 0 Z = 0 − 1

  9. Single-qubit circuits NEGATOR = N ( θ ) = � cos( θ/ 2) exp( − iθ/ 2) � i sin( θ/ 2) exp( − iθ/ 2) i sin( θ/ 2) exp( − iθ/ 2) cos( θ/ 2) exp( − iθ/ 2)

  10. Single-qubit circuits NEGATOR = N ( θ ) = � cos( θ/ 2) exp( − iθ/ 2) � i sin( θ/ 2) exp( − iθ/ 2) i sin( θ/ 2) exp( − iθ/ 2) cos( θ/ 2) exp( − iθ/ 2) with special values � 1 0 � N (0) = = I 0 1 � 0 1 � √ N ( π ) = = I = X 1 0 � 1 − i 1 + i � N ( π/ 2) = 1 √ = X = V 1 + i 1 − i 2 √ N ( π/ 4) = V = W

  11. Single-qubit circuits NEGATOR = N ( θ ) = � cos( θ/ 2) exp( − iθ/ 2) � i sin( θ/ 2) exp( − iθ/ 2) i sin( θ/ 2) exp( − iθ/ 2) cos( θ/ 2) exp( − iθ/ 2) 1 2 + 1 1 2 − 1   2 exp( iθ ) 2 exp( iθ ) =   1 2 − 1 1 2 + 1 2 exp( iθ ) 2 exp( iθ )

  12. Single-qubit circuits NEGATOR = N ( θ ) = � cos( θ/ 2) exp( − iθ/ 2) � i sin( θ/ 2) exp( − iθ/ 2) i sin( θ/ 2) exp( − iθ/ 2) cos( θ/ 2) exp( − iθ/ 2) N ( θ )

  13. Single-qubit circuits � 1 0 � I = 0 1 Two square roots: � 0 1 � X = 1 0 and � 1 � 0 Z = 0 − 1

  14. Single-qubit circuits PHASOR = Φ( θ ) = � 1 � 0 0 exp( iθ )

  15. Single-qubit circuits PHASOR = Φ( θ ) = � 1 � 0 0 exp( iθ ) with special values � 1 0 � Φ(0) = = I 0 1 � 1 � √ 0 Φ( π ) = = I = Z 0 − 1 � 1 0 � √ Φ( π/ 2) = = Z = S 0 i √ Φ( π/ 4) = S = T

  16. Single-qubit circuits PHASOR = Φ( θ ) = � 1 � 0 0 exp( iθ ) Φ( θ )

  17. Single-qubit circuits PHASOR = Φ( θ ) = � 1 � 0 0 exp( iθ ) Φ( θ ) NEGATOR = N ( θ ) = � cos( θ/ 2) exp( − iθ/ 2) � i sin( θ/ 2) exp( − iθ/ 2) i sin( θ/ 2) exp( − iθ/ 2) cos( θ/ 2) exp( − iθ/ 2) N ( θ )

  18. Two-qubit circuits • N ( θ )

  19. Two-qubit circuits • N ( θ ) Φ( θ ) ���� ����

  20. Multiple-qubit circuits • ���� ���� N ( θ )   1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0     0 0 1 0 0 0 0 0     0 0 0 1 0 0 0 0     i sin( θ/ 2) e − iθ/ 2 0 0 0 0 0 0 cos( θ/ 2) e − iθ/ 2     0 0 0 0 i sin( θ/ 2) e − iθ/ 2 cos( θ/ 2) e − iθ/ 2  0 0     0 0 0 0 0 0 1 0    0 0 0 0 0 0 0 1

  21. Multiple-qubit circuits • ���� ���� N ( θ )   1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0     0 0 1 0 0 0 0 0     0 0 0 1 0 0 0 0     i sin( θ/ 2) e − iθ/ 2 0 0 0 0 0 0 cos( θ/ 2) e − iθ/ 2     0 0 0 0 i sin( θ/ 2) e − iθ/ 2 cos( θ/ 2) e − iθ/ 2  0 0     0 0 0 0 0 0 1 0    0 0 0 0 0 0 0 1 XU( n ) ⊂ U( n )

  22. Multiple-qubit circuits • ���� ���� N ( θ )   1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0     0 0 1 0 0 0 0 0     0 0 0 1 0 0 0 0     i sin( θ/ 2) e − iθ/ 2 0 0 0 0 0 0 cos( θ/ 2) e − iθ/ 2     0 0 0 0 i sin( θ/ 2) e − iθ/ 2 cos( θ/ 2) e − iθ/ 2  0 0     0 0 0 0 0 0 1 0    0 0 0 0 0 0 0 1 XU( n ) ⊂ U( n ) ���� ���� ���� ���� • • • • •

  23. Multiple-qubit circuits • ���� ���� Φ( θ )   1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0     0 0 1 0 0 0 0 0     0 0 0 1 0 0 0 0     0 0 0 0 1 0 0 0     0 0 0 0 0 exp( iθ ) 0 0     0 0 0 0 0 0 1 0   0 0 0 0 0 0 0 1

  24. Multiple-qubit circuits • ���� ���� Φ( θ )   1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0     0 0 1 0 0 0 0 0     0 0 0 1 0 0 0 0     0 0 0 0 1 0 0 0     0 0 0 0 0 exp( iθ ) 0 0     0 0 0 0 0 0 1 0   0 0 0 0 0 0 0 1 ZU( n ) ⊂ U( n )

  25. Multiple-qubit circuits • ���� ���� Φ( θ )   1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0     0 0 1 0 0 0 0 0     0 0 0 1 0 0 0 0     0 0 0 0 1 0 0 0     0 0 0 0 0 exp( iθ ) 0 0     0 0 0 0 0 0 1 0   0 0 0 0 0 0 0 1 ZU( n ) ⊂ U( n ) ���� ���� ���� ���� • • • • •

  26. Within the unitary group U( n ), two subgroups : • the group XU( n ) of all n × n unitary matrices with all line sums equal to 1 • the group ZU( n ) of all n × n unitary diagonal matrices with first entry equal to 1.

  27. ✬ ✩ ✬ ✩ U( n ) ZU( n ) ✬ ✩ • ✫ ✪ ⋆ XU( n ) ✫ ✪ ✫ ✪ Whereas U( n ) has n 2 dimensions, XU( n ) has ( n − 1 ) 2 dimensions and ZU( n ) has ( n − 1 ) dimensions.

  28. An arbitrary member of U( n ) can be decomposed U = exp( iβ ) Z 1 X Z 2

  29. An arbitrary member of U( n ) can be decomposed U = exp( iβ ) Z 1 X Z 2 where Z 1 ∈ ZU( n ) X ∈ XU( n ) Z 2 ∈ ZU( n )

  30. An arbitrary member of U( n ) can be decomposed U = exp( iβ ) Z 1 X Z 2

  31. An arbitrary member of U( n ) can be decomposed U = exp( iβ ) Z 1 X Z 2 1 + ( n − 1 ) + ( n − 1 ) 2 + ( n − 1 )

  32. An arbitrary member of U( n ) can be decomposed U = exp( iβ ) Z 1 X Z 2 n 2 = 1 + ( n − 1 ) + ( n − 1 ) 2 + ( n − 1 )

  33. We conjectured ( arXiv:math - ph 1401.7883 ) on 30 Jan 2014.

  34. We conjectured ( arXiv:math - ph 1401.7883 ) on 30 Jan 2014. Idel and Wolf proved ( arXiv:math - ph 1408.5728 ) on 25 Aug 2014

  35. Thus U = exp( iβ ) Z 1 X Z 2 e iβ Z 1 Z 2 X

  36. The two ZU( n ) parts : = Z

  37. The two ZU( n ) parts : = Z ���� ���� ���� ���� • • ���� ���� • ���� ���� ... • • ���� ���� • • Φ( α 7 ) Φ( α 5 ) Φ( α 3 ) ���� ���� ���� ���� ���� ���� • • ���� ���� ���� ���� ���� ���� ... • • • ���� ���� Φ( α 8 ) Φ( α 6 ) Φ( α 4 ) Φ( α 2 ) • •

  38. The XU( n ) part : = X

  39. The XU( n ) part : = X ... C 2 n − 2 C 1 C 2 C 3

  40. The XU( n ) part : = X ... C 2 n − 2 C 1 C 2 C 3 where C j is a block-circulant XU( n ) matrix

  41. E.g.   1 0 0 0 0 − 1 / 3 2 / 3 2 / 3   C =   0 2 / 3 − 1 / 3 2 / 3   0 2 / 3 2 / 3 − 1 / 3

  42. E.g.   1 0 0 0 0 − 1 / 3 2 / 3 2 / 3   C =   0 2 / 3 − 1 / 3 2 / 3   0 2 / 3 2 / 3 − 1 / 3 ���� ���� N 2 N 3 N 1 • • • ���� ���� ... N 1 N 1 N 4 • • N 1 N 3 N 2 • • • ���� ���� ... N 5 N 1 N 1 •

  43. E.g.   1 0 0 0 0 − 1 / 3 2 / 3 2 / 3   C =   2 / 3 − 1 / 3 2 / 3 0   0 2 / 3 2 / 3 − 1 / 3 ���� ���� N 2 N 3 N 1 • • • ���� ���� ... N 1 N 1 N 4 • • N 1 N 3 N 2 • • • ���� ���� ... N 5 N 1 N 1 • where N 1 = N ( π/ 2) , N 2 = N ( π/ 4) N 3 = N (7 π/ 4) N 4 = N ( π + Arccos (1 / 3)) N 5 = N ( − π − Arccos (1 / 3)) .

  44. Conclusion : U = exp( iβ ) Z 1 X Z 2 e iβ Z 1 Z 2 X

  45. Conclusion : U = exp( iβ ) Z 1 X Z 2 e iβ Z 1 Z 2 X Z 1 with PHASOR s X with NEGATOR s Z 2 with PHASOR s

  46. The end / La fin Waterloo (Belgique), 18 June 1815

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend