framew ork for the esti mati on of msw uni t w ei ght
play

FRAMEW ORK FOR THE ESTI MATI ON OF MSW UNI T W EI GHT PROFI LE - PowerPoint PPT Presentation

Sardinia 2005, Tenth International Waste Management and Landfill Symposium S. Margherita di Pula, Cagliari, Italy; 3 - 7 October 2005 FRAMEW ORK FOR THE ESTI MATI ON OF MSW UNI T W EI GHT PROFI LE by D. ZEKKOS, J. BRAY, E. KAVAZANJIAN, Jr. ,


  1. Sardinia 2005, Tenth International Waste Management and Landfill Symposium S. Margherita di Pula, Cagliari, Italy; 3 - 7 October 2005 FRAMEW ORK FOR THE ESTI MATI ON OF MSW UNI T W EI GHT PROFI LE by D. ZEKKOS, J. BRAY, E. KAVAZANJIAN, Jr. , N. MATASOVIC, E. RATHJE, M. RIEMER, & K. STOKOE II Univ. of California at Berkeley, Arizona State Univ., GeoSyntec Consultants, & Univ. of Texas at Austin Sponsored by the U.S. National Science Foundation

  2. Significant Uncertainty in Current MSW Unit Weight Estimates Augello et al. 1998

  3. MSW Unit Weight Is Important • Large range of MSW unit weight, e.g. 5 - 15 kN/m 3” – Differ by factor of 3! • Liner interface strength 0.45 depends on overburden 5% damping 0.4 stress 0.35 0.3 PSA, g's 0.25 • Landfill capacity estimates 0.2 depend on MSW unit weight 0.15 0.1 0.05 • Seismic performance 0 depends on MSW unit 0.01 0.1 1 10 Period, sec weight profile Rock mot ion MSW surface- Kavazanjian et al. 1995 MSW surface- const ant unit weight

  4. Methods to Evaluate MSW Unit Weight 1. Landfill Records and Post-Placement Surveys 2. Unit Weight Measured from Conventional Geotechnical Sampling 3. In-Situ Large-Scale Test Pits or Large-Diameter Boreholes (mimics sand cone density tests with calibrated gravel)

  5. In-Situ Large-Diameter Borehole Method 1. Auger and collect waste 2. Weigh waste collected over interval (W waste ) W γ = waste waste V waste Developed by Kavazanjian and Matasovic for OII Landfill 3. Place tremie pipe in borehole 4. Fill with gravel of known unit weight (V waste )

  6. Large Scatter in Reliable MSW Unit Weight Data Total unit weight, kN/ m 3 0 5 10 15 20 25 0 1 2 3 4 20 5 6 Depth, m Kavazanjian et al. (1995) 7 8 9 40 10 11 60 (1) Santo Tirso, Portugal (Gom es et al. 2002); (2) OI I , California, USA (Matasovic and Kavazanjian, 1998); (3) Azusa, California, USA (Kavazanjian et al, 1996); (4) Tri-Cities, California, USA (this study); (5) no nam e older landfill (Oweis and Khera, 1998); (6) no nam e younger landfill (Oweis and Khera, 1998); (7) Hong Kong, China (Cowland et al. 1993); (8) Central Mayne landfill, USA (Richardson and Reynolds, 1991); (9) 11 Canadian landfills (Landva & Clark, 1986); (10) Valdem ingom ez, Spain (Pereira et al. 2002); (11) Cherry I sland landfill, Delaware, USA (Geosyntec, 2003); Data from reliable in-situ large-scale methods available in Zekkos et al. (2005) Berkeley Geotechnical report

  7. Characteristic MSW Unit Weight Profile Exists 0 10 20 30 0 10 20 30 0 10 20 30 0 0 0 10 10 10 20 20 20 Depth, m 30 30 30 40 40 40 50 50 50 OII Tri-Cities Azusa 60 60 60 0 10 20 30 0 10 20 30 0 10 20 30 0 0 0 Depth, m 10 10 10 20 20 20 "Younger" Cherry Island "older" 30 30 30 Geosyntec (2003), Matasovic and Kavazanjian (1998), Kavazanjian et al (1996), Oweis and Khera (1998), Zekkos et al (2005) • Need landfill-specific data • Model can be developed to capture change with depth

  8. 15.0 Total unit weight, kN/ m 3 Compaction Level (& waste composition) Determines Initial MSW W=4.5kgr, h=80 cm,t=7.5cm 10.0 W=4.5kgr, h=40 cm, t=7.5 cm Unit Weight W=5.4kgr, h=80 cm, t=5 cm W=1 0kgr, h=80 cm, t=5 cm W=1 0kgr, h=80 cm, t=7.5 cm 5.0 0.00 0.20 0.40 0.60 0.80 3 Unit w eight, kN / m Total energy per target volum e of 12 17 22 m aterial (Joule/ cm 3 ) 0 (Tri-Cities Landfill data) Mean effective stress, kPa 200 Confining Stress Determines Variation 400 of MSW Unit Weight 600 with Depth 800 Kavazanjian 1999

  9. Hyperbolic Relationship 0 100 Unit weight , kN / m 3 Normal stress, kPa Model calibration against 10 11 12 13 200 field & lab 0 Energy to MSW (com paction L and/ or confinem ent) 10 300 3 Looser specimen, γ i =10.3 kN/m 20 3 400 Denser specimen, γ i =12.9 kN/m H 30 9 10 11 12 13 14 15 16 3 Unit weight, kN/m 40 50 z γ = γ + i α + β ⋅ z 60 70 Depending on initial unit weight, increase in depth produces large or small increase in unit weight

  10. Characteristic MSW Unit Weight Profiles Tot al unit weight , kN/ m 3 0 5 10 15 20 0 10 increasing compact ion effort and soil cover 20 Depth, m 30 low compact ion effort and soil t ypical cover 40 high OII landfill 50 Azusa landfill "Older" landfill in New Jersey 60

  11. RECOMMENDATIONS FOR PRACTICE (A) Design based on a comprehensive investigation Step 1: Measure MSW unit weight near surface using test pits Step 2: Measure MSW unit weight at greater depths using large-diameter boreholes Step 3: Develop MSW unit weight profile using hyperbolic model

  12. (B) Estimates based on a limited investigation • Step 1: Estimate MSW unit weight near the surface using test pits, landfill records, or published values ( γ i ~ 13 kN/m 4 ) • Step 2: Use design charts to estimate α and β parameters ( β = 0.4 m 3 /kN and α = 3 m 4 /kN ) z γ = γ + i α + β ⋅ z 16 DESIGN CHART 1: ESTIMATION OF β - PARAMETER DESIGN CHART 2: ESTIMATION OF α - PARAMETER 1.2 Field data range 14 Increased compaction 3 Near surface unit weight, γ i , kN / m 1.0 effort & soil cover (lab) 12 3 / kN 0.8 β - parameter, m 10 0.6 n o ) Field data i t b c a a l p ( Tri-Cities Laboratory data m r 8 e o v 0.4 OII A3-1L c o c d e l i Azusa A3-3L s o a s e & A3-7L "Older" r c 6 t n 0.2 r o I A3-8L "Younger" f f e A3-12L Cherry Island 4 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 2 4 6 8 10 12 3 / kN 4 / kN β - parameter, m α - parameter, m

  13. (C) Design of a new landfill Use MSW unit weight profiles for low, typical, or high compaction effort and soil cover Tot al unit weight , kN/ m 3 0 5 10 15 20 0 10 increasing compact ion effort and soil cover 20 Depth, m 30 low compact ion effort and soil t ypical cover 40 high OII landfill 50 Azusa landfill "Older" landfill in New Jersey 60

  14. z γ = γ + Conclusions i α + β ⋅ z • Comprehensive MSW unit weight database has been developed • A characteristic MSW unit weight profile exists for each landfill • A hyperbolic model can capture the dependence of MSW unit weight on its composition, compaction effort, and confining stress • The developed model was calibrated with reliable in-situ landfill unit weight data as well as large-scale laboratory data. • Landfill-specific data are important for establishing the near surface (initial) unit weight of MSW • Hyperbolic model can extend near surface data to greater depths

  15. Thank you Additional information available at the Geoengineer website at: http://www.geoengineer.org

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend