fractional tikhonov regularization on graphs
play

Fractional-Tikhonov regularization on graphs (applied to signal and - PowerPoint PPT Presentation

Fractional-Tikhonov regularization on graphs (applied to signal and image restoration) by Davide Bianchi Universit` a degli Studi dellInsubria Dip. di Scienze e Alta Tecnologia 23 rd of May, 2018 1 of 22 Our model problem y = x


  1. Fractional-Tikhonov regularization on graphs (applied to signal and image restoration) by Davide Bianchi Universit` a degli Studi dell’Insubria Dip. di Scienze e Alta Tecnologia 23 rd of May, 2018 1 of 22

  2. Our model problem y δ = x ∗ + K noise • K represents the blur and it is severely ill-conditioned (compact integral operator of the first kind); • y δ are known measured data (blurred and noisy image); • � noise � ≤ δ . 2 of 22

  3. Singular value expansion and generalized inverse Since K is compact, we can write + ∞ � Kx = σ m � x, v m � u m , m =1 where ( σ m ; v m , u m ) m ∈ N is the singular value expansion of K . Generalized inverse We define K † : D ( K † ) ⊆ Y → X as � σ − 1 K † y = m � y, u m � v m , m : σ m > 0 � � m |� y, u m �| 2 < ∞ � σ − 2 D ( K † ) = y ∈ Y : . m : σ m > 0 3 of 22

  4. In the free-noise case, we have x † = K † y, but due to the ill-posedness of the problem, x δ = K † y δ is not a good approximation of x † . Since we are dealing with data affected by noise, i.e., with y δ , then we can not use K † to compute an approximated solution. We have to regularize the operator K † . 4 of 22

  5. Filter based regularization methods We substitute the K † operator with a one-parameter family of continuous linear operators { R α } α ∈ (0 ,α 0 ) , K † y δ = � σ − 1 m � y δ , u m � v m m : σ m > 0 ⇓ R α y δ = � F α ( σ m ) σ − 1 m � y δ , u m � v m m : σ m > 0 α = α ( δ, y δ ) is called rule choice. 5 of 22

  6. Fractional Tikhonov filter functions σ 2 m • Standard Tikhonov filter: F α ( σ m ) = m + α , with α > 0 . σ 2 � γ σ 2 � m • Fractional Tikhonov filter: F α,γ ( σ m ) = , with α > 0 σ 2 m + α and γ ∈ [1 / 2 , ∞ ) (Klann and Ramnlau, 2008). σ r +1 m • Weighted/Fractional Tikhonov filter: F α,r ( σ m ) = + α , with σ r +1 m α > 0 and r ∈ [0 , + ∞ ) (Hochstenbach and Reichel, 2011). For 1 / 2 ≤ γ < 1 and 0 ≤ r < 1 , fractional and weighted filters smooth the reconstructed solution less than standard Tikhonov. 6 of 22

  7. An easy 1 d example of oversmoothing - part 1 Blur taken from Heat ( n, κ ) in Regtools , n = 100 , κ = 1 and 2% noise . True solution: � 0 if 0 ≤ t ≤ 0 . 5 , x † : [0 , 1] → R x † ( t ) = s.t. 1 if 0 . 5 < t ≤ 1 . 1.2 true solution Tik 1 F- Tik, r=0.35 blur+2% noise 0.8 0.6 F-Tik, r=3 0.4 0.2 0 -0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 7 of 22

  8. Let’s reformulate the problem x ∈ R n � K x − y � 2 2 + α � x � 2 • Tikhonov: argmin 2 8 of 22

  9. Let’s reformulate the problem x ∈ R n � K x − y � 2 2 + α � x � 2 • Tikhonov: argmin 2 r − 1 x ∈ R n � K x − y � 2 W + α � x � 2 2 , with W = ( KK ∗ ) • F. Tikhonov: argmin 2 . 8 of 22

  10. Let’s reformulate the problem x ∈ R n � K x − y � 2 2 + α � x � 2 • Tikhonov: argmin 2 r − 1 x ∈ R n � K x − y � 2 W + α � x � 2 2 , with W = ( KK ∗ ) • F. Tikhonov: argmin 2 . x ∈ R n � K x − y � 2 2 + α � L x � 2 • Generalized Tikhonov: argmin 2 , with L semi-positive definite and ker( L ) ∩ ker( K ) = � 0 . ker( L ) should ‘ approximate the features ’of x † . 8 of 22

  11. Let’s reformulate the problem x ∈ R n � K x − y � 2 2 + α � x � 2 • Tikhonov: argmin 2 r − 1 x ∈ R n � K x − y � 2 W + α � x � 2 2 , with W = ( KK ∗ ) • F. Tikhonov: argmin 2 . x ∈ R n � K x − y � 2 2 + α � L x � 2 • Generalized Tikhonov: argmin 2 , with L semi-positive definite and ker( L ) ∩ ker( K ) = � 0 . ker( L ) should ‘ approximate the features ’of x † . x ∈ R n � K x − y � 2 W + α � L x � 2 • Generalized F. Tikhonov: argmin 2 8 of 22

  12. Laplacian - Finite Difference approximation Poisson (Sturm-Liouville) problem on [0 , 1] :  − ∆ x ( t ) = f ( t ) t ∈ (0 , 1) ,   α 1 x (0) + β 1 x ′ (0) = γ 1 ,  α 2 x (1) + β 2 x ′ (1) = γ 2 .  If we consider Dirichlet homogeneous boundary conditions ( x (0) = x (1) = 0 ) and 3-point stencil FD approximation: − ∆ x ( t ) ≈ − x ( t − h ) + 2 x ( t ) − x ( t + h ) , h 2 = n − 2 , h 2   2 − 1 0 · · · − 1 2 − 1 · · ·   ker( L ) = � L = 0 .   ... ... ...     0 − 1 2 9 of 22

  13. Laplacian - Finite Difference approximation · · · If we consider Neumann homogeneous boundary conditions ( x ′ (0) = x ′ (1) = 0 ) and 3-point stencil FD approximation: − ∆ x ( t ) ≈ − x ( t − h ) + 2 x ( t ) − x ( t + h ) , h 2 = n − 2 , h 2   1 − 1 0 · · · − 1 2 − 1 · · ·   ker( L ) = Span { � L = 1 } .   ... ... ...     0 − 1 1 10 of 22

  14. An easy 1 d example of oversmoothing - part 2 Blur taken from Heat ( n, κ ) in Regtools , n = 100 , κ = 1 and 2% noise . True solution: � 0 if 0 ≤ t ≤ 0 . 5 , x † : [0 , 1] → R x † ( t ) = s.t. 1 if 0 . 5 < t ≤ 1 . 1.2 True solution 1 Tik + L dirichlet 0.8 Tik + L neumann 0.6 0.4 0.2 0 -0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 11 of 22

  15. Graph Laplacian • An image/signal x can be represented by a weighted undirected graph G = ( V, E, w ) : ◦ the nodes v i ∈ V are the pixels of the image/signal and x i ≥ 0 is the color intensity of x at v i . ◦ an edge e i,j ∈ E ⊆ V × V exists if the pixels v i and v j are connected, i.e., v i ∼ v j . ◦ w : E → R is a similarity (positive) weight function, w ( e i,j ) = w i,j . � • The graph Laplacian is defined as ∆ ( n ) w x i = w i,j ( x i − x j ) . v j ∼ v i Remark � � x ′′ ( t ) φ ( t ) dµ ( t ) = x ( t ) φ ′′ ( t ) dµ ( t ) ([0 , 1] ,µ ) ([0 , 1] ,µ ) 12 of 22

  16. Graph Laplacian - Example Example . In the 1 d case, if we define � 1 if i � = j, v i ∼ v j iff i = j + 1 or i = j − 1 , w i,j = 0 if i = j, then it holds   1 − 1 0 · · · − 1 2 − 1 · · ·   ∆ ( n ) = L ( n ) =   ... ... ... w w     0 − 1 1 13 of 22

  17. Question Why should the red points be connected? 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 14 of 22

  18. Answer They should not, indeed 1.2 1 true Tik + graph 0.8 0.6 0.4 0.2 0 -0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 � � L ( n/ 2) 0 L ( n ) w = w L ( n/ 2) 0 w 15 of 22

  19. Fractional Tikhonov + Graph Laplacian 1.2 True 1 F. Tik. + graph, r=4 0.8 0.6 0.4 0.2 0 -0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 16 of 22

  20. Remark 1/2 1.2 True 1 Tik. + graph, 1 p. con. 0.8 0.6 0.4 0.2 0 -0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 17 of 22

  21. Remark 2/2 1.2 True 1 Tik. + graph, 5 p.con. 0.8 0.6 0.4 0.2 0 -0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 18 of 22

  22. another example - heat ( n, 1) 5% noise � � L ( n ) L ( n/ 4) , L ( n/ 4) , L ( n/ 4) , L ( n/ 4) = diag w w w w w 19 of 22

  23. another another example - deriv2 ( n, 3) , 2% noise 0.06 True 0.05 Tik. F. Tik. + graph 0.04 0.03 0.02 0.01 0 -0.01 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  0 0 · · · · · · 0  − 1 2 − 1 · · · 0 � �   L ( n/ 2) 0   ... ... ... L ( n ) w L ( n/ 2) = =   w w L ( n/ 2) 0   w   − 1 2 − 1   0 0 · · · · · · 0 ker( L ( n/ 2) ) = Span { � 1 ,� t } w 20 of 22

  24. (another) 3 example - heat ( n, 1) 2% noise 3 True 2.5 Tik. F. Tik. + graph 2 1.5 1 0.5 0 -0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 21 of 22

  25. Some references • Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and Vandergheynst, P., The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , IEEE Signal Processing Magazine, 30(3), 83-98 (2013). • Faber, X. W. C., Spectral convergence of the discrete Laplacian on models of a metrized graph , New York J. Math, 12, 97-121 (2016). • Bianchi, D., and Donatelli, M., On generalized iterated Tikhonov regularization with operator-dependent seminorms , Electronic Transactions on Numerical Analysis, 47, 73-99 (2017). • Gerth, D., Klann, E., Ramlau, R., and Reichel, L., On fractional Tikhonov regularization. Journal of Inverse and Ill-posed Problems , 23(6), 611-625 (2008). • Bianchi, D., and Donatelli, M., Fractional-Tikhonov regularization on graphs for image restoration , preprint. 22 of 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend