four dimensional sil nikov type dynamics in
play

Four-dimensional Silnikov-type dynamics in x ( t ) = x ( t d - PDF document

Four-dimensional Silnikov-type dynamics in x ( t ) = x ( t d ( x t )) (Joint work with Hans-Otto Walther; in progress) Bernhard Lani-Wayda Southern Ontario Dynamics Day, Toronto 2013 Result of H.-O. Walther: Existence


  1. Four-dimensional ˇ Sil’nikov-type dynamics in x ′ ( t ) = − α · x ( t − d ( x t )) (Joint work with Hans-Otto Walther; in progress) Bernhard Lani-Wayda Southern Ontario Dynamics Day, Toronto 2013

  2. Result of H.-O. Walther: Existence of solution homoclinic to 0 for x ′ ( t ) = − α · x ( t − d ( x t )) , if the delay function d is chosen appropriately. Spectrum at zero: ( d = 1 , α ≈ 5 π/ 2) ρ 2 > | ρ 1 | , 0 > ρ 1 > ρ. ρ 1 + iω 1 Im ✻ ❘ ρ 2 + iω 2 ✴ ✲ Re C C S ρ

  3. Aim of joint work: Show existence of symbolic dynamics for a return map of the above equation. Sil’nikov in R 4 (1967).) (Famous precursor: Result of ˇ We describe the essential framework without reference to an equation: 1) ( X, || || ) Banach space, decomposition X = S × C × C 2) C 0 − semigroup T : R + 0 → L c ( X, X ), T ( t )( x s , z 1 , z 2 ) = ( T S ( t ) x s , e ( ρ 1 + iω 1 ) t z 1 , e ( ρ 2 + iω 2 ) t z 2 ) where || T S ( t ) || ≤ Ke ρt for some K > 0, and ρ < ρ 1 < 0 < ρ 2 , ρ 2 > | ρ 1 | . 3) Consider the sets � � � � || x S || < r 1 /K, | z 1 | = r 1 , 0 < | z 2 | < r 2 S r 1 ,r 2 := ( x S , z 1 , z 2 ) ∈ X , � � � � || x S || < r 1 /K, | z 1 | < r 1 , | z 2 | = r 2 Σ r 1 ,r 2 := ( x S , z 1 , z 2 ) ∈ X . For x = ( x S , z 1 , z 2 ) ∈ S r 1 ,r 2 there exists a unique time τ ( x ) > 0 such that T ( τ ( x )) x ∈ Σ r 1 ,r 2 , namely τ ( x ) := 1 log( r 2 | z 2 | ) . ρ 2

  4. The local map. P 0 : S r 1 ,r 2 → Σ r 1 ,r 2 , P 0 ( x ) := T ( τ ( x )) x. Explicitly: For x = ( x S , z 1 , z 2 ) ∈ S r 1 ,r 2 , z 2 = r 2 e iθ 2 , z 1 = r 1 e iθ 1 , � r 2 � ρ 1 /ρ 2 · e i ( ω 1 τ ( x )+ θ 1 ) ) , r 2 e i ( ω 2 τ ( x )+ θ 2 ) P 0 ( x ) = ( y S , r 1 ) | z 2 | � �� � =: w 2 � �� � =: w 1 where || y S || ≤ || x S || Ke ρτ ( x ) < r 1 e ρτ ( x ) . Note: | w 1 | ∼ | z 2 | − ρ 1 /ρ 2 , 0 < exponent < 1. (Thus, 1 >> | w 1 | >> | z 2 | .) × Σ r 1 ,r 2 S × ✻ P 0 θ 2 θ 1 r 2 ☛ ☛ r 1 × × S r 1 ,r 2 S

  5. 2 ∈ [0 , 2 π ) and a C 1 map The global map. Assume there exists θ ∗ 1 , θ ∗ P 1 , with values in S r 1 ,r 2 and defined on the set � � � � max {|| y S || , | w 1 | , | θ 2 − θ ∗ Σ ∗ y = ( y S , w 1 , w 2 = r 2 e iθ 2 ) ∈ Σ r 1 ,r 2 r 1 ,r 2 := 2 |} < δ 2 such that with y ∗ := (0 , 0 , r 2 e iθ ∗ 2 ) ∈ Σ r 1 ,r 2 and x ∗ = ( x ∗ S , r 1 e iθ ∗ 1 , 0) ∈ S r 1 ,r 2 one has P 1 ( y ∗ ) = x ∗ . θ ∗ 2 y ∗ Σ r 1 ,r 2 P 1 ❄ θ ∗ 1 S r 1 ,r 2 x ∗

  6. Domain of P 1 : y 1 ✻ y ∗ × S .............................................. ✲ θ 2 ❘ x 1 ✛ ✲ 2 δ 2

  7. The composition. 2 + δ 2 ] . If ϑ ∗∗ > ϑ ∗ > 0 are large enough and δ 1 ∈ Set I 2 := [ θ ∗ 2 − δ 2 , θ ∗ (0 , π/ 2), the set � � ( x S , z 1 = r 1 e iθ 1 , z 2 = r 2 e iθ 2 ) ∈ S r 1 ,r 2 D ϑ ∗ ,ϑ ∗∗ := � | θ 1 − θ ∗ 1 | < δ 1 , − ϑ ∗∗ < θ 2 ≤ − ϑ ∗ , | z 2 | ∈ r 2 · exp[ − ρ 2 � ( I 2 − θ 2 )] ω 2 satisfies P 0 ( D ϑ ∗ ,ϑ ∗∗ ) ⊂ Σ ∗ r 1 ,r 2 , and hence one can define the composition P := P 1 ◦ P 0 : D ϑ ∗ ,ϑ ∗∗ → S r 1 ,r 2 . A typical domain D ϑ ∗ ,ϑ ∗∗ : ✯ θ 1 y 2 ✻ x ∗ x 2 + iy 2 = z 2 = | z 2 | e iθ 2 × S ✲ x 2

  8. Explicit formulas. x S , r 1 e i ˜ Describe P 1 in the form y = ( y S , x 1 + iy 1 , r 2 e iθ 2 ) �→ (˜ θ 1 , ˜ z 2 ), with C 1 functions ˜ x S , ˜ � y ∗ ˜ ∂ ∂ θ 1 , ˜ z 2 , and partial derivatives � y ∗ ˜ z 2 , θ 1 , etc. � � ∂θ 2 ∂x 1 For x = ( x S , r 1 e iθ 1 , z 2 ) ∈ D ϑ ∗ , set τ := τ ( x ) (as above) , r ′ 1 := r 1 ( r 2 / | z 2 | ) ρ 1 /ρ 2 , x 1 := r ′ 1 cos( ω 1 τ + θ 1 ) , y 1 := r ′ 1 sin( ω 1 τ + θ 1 ) , y S := T ( τ ) x S , || y S || ≤ r 1 e ρτ ∼ | z 2 | | ρ/ρ 2 | � 1 + < ∇ 3 ˜ 0 , r 1 exp { i [ θ ∗ � y ∗ , ( x 1 , y 1 , θ 2 − θ ∗ Then P ( x ) = θ 1 � 2 ) > + E 1 ] } , � � y ∗ , ( x 1 , y 1 , θ 2 − θ ∗ < ∇ 3 ˜ z 2 � 2 ) > + E 2 + E 3 + E 4 , where E 1 , E 2 = o ( r ′ 1 + r 2 ( ω 2 τ + θ 2 − θ ∗ 2 )) , E 3 = O ( || y S || ) , E 4 = (˜ x S , 0 , 0), x S || = O ( r ′ and || ˜ 1 + δ 2 r 2 ) . (Briefly: Taylor expansion of first order w.r.t. 3d-Variables, but only to zero order w.r. to S .)

  9. Set Y 3 := span( ∂ ∂ , ∂ X 3 := span( ∂ , ∂ , ∂ , ) � � y ∗ , ) � � x ∗ , ∂θ 2 ∂x 1 ∂y 1 ∂θ 1 ∂x 2 ∂y 2 then T y ∗ Σ r 1 ,r 2 = S ⊕ Y 3 , T x ∗ S r 1 ,r 2 = S ⊕ X 3 with a corresponding projection pr 3 to X 3 . Transversality conditions: 1) pr 3 ◦ DP 1 ( y ∗ ) is invertible on Y 3 ; 2) ζ 2 := ∂ ˜ z 2 � y ∗ � = 0, or equivalently: DP 1 ( y ∗ ) ∂ � y ∗ �∈ R ∂ � x ∗ . � � � ∂θ 2 ∂θ 1 ∂θ 2 (Geometric meaning: The image of D ϑ ∗ under P is not coaxial with D ϑ ∗ ,ϑ ∗∗ .) Consequences: a) With U 1 := pr 3 DP 1 ( y ∗ ) span( ∂ ∂ ∂x 1 , ∂y 1 ) � � y ∗ , one has X 3 = U 1 ⊕ R · ζ 2 . ∂ b) Let H ⊂ X 3 be a plane containing ζ 2 and such that ∂θ 1 �∈ H ; then pr x 2 ,y 2 is an isomorphism on H . (particularly convenient choice possible).

  10. Choice of N 0 , N 1 . With suitably chosen numbers ϑ 0 , ϑ 00 , ϑ 1 , ϑ 11 and ε 1 > 0, the sets N 0 := D ϑ 0 ,ϑ 00 , N 1 := D ϑ 1 ,ϑ 11 have the properties below: a) (their images lie on different sides of the plane x ∗ + H ). b) For fixed ¯ θ 1 and j ∈ { 1 , 2 } , the map N j ∋ (0 , r 1 e i ¯ θ 1 , z 2 ) �→ pr x 2 ,y 2 pr X 3 P ((0 , r 1 e i ¯ θ 1 , z 2 )) is homeomorphic. (Easier to see for pr H ; then use that pr x 2 ,y 2 is isomorphic on H .)

  11. Main Theorem. ∀ ( ...s − 2 s − 1 s 0 s 1 s 2 ... ) ∈ { 0 , 1 } Z ∃ trajectory ( x j ) j ∈ Z of P with x j ∈ N s j for all j ∈ Z . Proof (ideas): 1) For a finite, periodic symbol sequence α = ( s 0 , s 1 , ..., s k = s 0 ) ∈ { 0 , 1 } k +1 and a map f defined on N 0 ∪ N 1 , define N α,f := N s 0 ∩ f − 1 ( N s 1 ) ∩ ... ∩ f − k ( N s k ) . Lemma (Zgliczy´ nski). If f, g are homotopic maps and the invariant set is disjoint to ∂N 0 ∪ ∂N 1 throughout the homotopy, then ind( f k , N α,f ) = ind( g k , N α,g ) . 2) Three homotopies as in the lemma: a) P ∼ P 3 := pr X 3 ◦ P ; (eliminate S − component from image of P ) b) P 3 ∼ ˜ P 3 ; (eliminate θ 1 − dependence) c) ˜ P 3 ∼ P 2 := pr x 2 ,y 2 ◦ ˜ P 3 (project values to x 2 , y 2 -space). 3) With the Lemma and the reduction property of fixed point index: ind( P k , N α ) = ind( P k 2 , N α ) = ind( P k 2 , N α ∩ ( x 2 , y 2 ) − space) .

  12. 4) ( N 0 ∪ N 1 ) ∩ ( x 2 , y 2 ) − space consists of two sets homeomorphic to a ball in R 2 , mapped by P 2 homeomorphically to a larger ball containing both. 5) Lemma. For a map f as in the situation of 4), ind( f k , N α ) = ± 1. 6) Corollary. There is a periodic orbit of P obeying α . 7) The main theorem now follows with a standard compactness argument, using that P is compact and that periodic symbol sequences are dense in the space of all symbol sequences (with the product topology). Thank you for your attention!

  13. References [1] L.P. ˇ Sil’nikov, The existence of a denumerable set of periodic motions in four- dimensional space in an extended neighborhood of a saddle-focus, Dokl. Akad. Nauk. SSR, Tom. 172 , No. 1, 1967. Translation: Soviet Math. Dokl. Vol. 8 , No. 1 (1967). [2] H. Steinlein, Nichtlineare Funktionalanalysis, Lecture at Ludwig-Maximilians- Universit¨ at M¨ unchen, 1986/87. [3] H.-O. Walther, A homoclinic loop generated by variable delay, preprint, submit- ted 2012. [4] S. Wiggins, Global bifurcations and chaos, Springer-Verlag, New York, 1988, pp. 267-275. [5] E. Zeidler, Nonlinear Functional Analysis and its Applications I (Fixed Point Theorems), Springer-Verlag, New York, 1986 (Second Printing, 1992). (In particular, Section 13.7, pp. 574 - 578.) [6] P. Zgliczy´ nski, Fixed point for iterations of maps, topological horseshoe and chaos , Topological Methods in Nonlinear Analysis (Journal of the Juliusz Schauder Center) Vol. 8 (1996), 169-177.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend