a gentle introduction to mathematical fuzzy logic
play

A Gentle Introduction to Mathematical Fuzzy Logic 3. Predicate - PowerPoint PPT Presentation

A Gentle Introduction to Mathematical Fuzzy Logic 3. Predicate ukasiewicz and GdelDummett logic Petr Cintula 1 and Carles Noguera 2 1 Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic 2 Institute of


  1. A Gentle Introduction to Mathematical Fuzzy Logic 3. Predicate Łukasiewicz and Gödel–Dummett logic Petr Cintula 1 and Carles Noguera 2 1 Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic 2 Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, Czech Republic www.cs.cas.cz/cintula/MFL Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 1 / 79

  2. Predicate language Predicate language: P = � P , F , ar � : predicate and function symbols with arity Object variables: denumerable set OV P -terms: if v ∈ OV , then v is a P -term if f ∈ F , ar ( F ) = n , and t 1 , . . . , t n are P -terms, then so is f ( t 1 , . . . , t n ) Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 3 / 79

  3. Formulas Atomic P -formulas: propositional constant 0 and expressions of the form R ( t 1 , . . . , t n ) , where R ∈ P , ar ( R ) = n , and t 1 , . . . , t n are P -terms. P -formulas: the atomic P -formulas are P -formulas if α and β are P -formulas, then so are α ∧ β , α ∨ β , and α → β if x ∈ OV and α is a P -formula, then so are ( ∀ x ) α and ( ∃ x ) α Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 4 / 79

  4. Basic syntactical notions P -theory: a set of P -formulas A closed P -term is a P -term without variables. An occurrence of a variable x in a formula ϕ is bound if it is in the scope of some quantifier over x ; otherwise it is called a free occurrence. A variable is free in a formula ϕ if it has a free occurrence in ϕ . A P -sentence is a P -formula with no free variables. A term t is substitutable for the object variable x in a formula ϕ ( x ,� z ) if no occurrence of any variable occurring in t is bound in ϕ ( t ,� z ) unless it was already bound in ϕ ( x ,� z ) . Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 5 / 79

  5. Axiomatic system A Hilbert-style proof system for CL ∀ can be obtained as: axioms of CL substituting propositional variables by P -formulas (P) ( ∀ 1 ) ( ∀ x ) ϕ ( x ,� z ) → ϕ ( t ,� z ) t substitutable for x in ϕ ( ∀ 2 ) ( ∀ x )( χ → ϕ ) → ( χ → ( ∀ x ) ϕ ) x not free in χ ( MP ) modus ponens for P -formulas from ϕ infer ( ∀ x ) ϕ . ( gen ) Let us denote as ⊢ CL ∀ the provability relation. Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 6 / 79

  6. Semantics Classical P -structure: a tuple M = � M , � P M � P ∈ P , � f M � f ∈ F � where M � = ∅ P M ⊆ M n , for each n -ary P ∈ P f M : M n → M for each n -ary f ∈ F . M -evaluation v : a mapping v : OV → M For x ∈ OV , m ∈ M , and M -evaluation v , we define v [ x : m ] as � if y = x m v [ x : m ]( y ) = v ( y ) otherwise Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 7 / 79

  7. Tarski truth definition Interpretation of P -terms � x � M = v ( x ) for x ∈ OV v � f ( t 1 , . . . , t n ) � M f M ( � t 1 � M v , . . . , � t n � M for n -ary f ∈ F = v ) v Truth-values of P -formulas � P ( t 1 , . . . , t n ) � M �� t 1 � M v , . . . , � t n � M v = 1 iff v � ∈ P M for P ∈ P � M � � v = 0 � 0 � α ∧ β � M � α � M v = 1 and � β � M v = 1 iff v = 1 � α ∨ β � M � α � M v = 1 or � β � M v = 1 iff v = 1 � α → β � M � α � M v = 0 or � β � M v = 1 iff v = 1 � ( ∀ x ) ϕ � M for each m ∈ M we have � ϕ � M v = 1 iff v [ x : m ] = 1 � ( ∃ x ) ϕ � M there is m ∈ M such that � ϕ � M v = 1 iff v [ x : m ] = 1 Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 8 / 79

  8. Model and semantical consequence = ϕ if � ϕ � M We write M | v = 1 for each M -evaluation v . Model: We say that a P -structure M is a P -model of a P -theory T , M | = T in symbols, if M | = ϕ for each ϕ ∈ T . Consequence: A P -formula ϕ is a semantical consequence of a P -theory T , T | = CL ∀ ϕ , if each P -model of T is also a model of ϕ . Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 9 / 79

  9. The completeness theorem Problem of completeness of CL ∀ : formulated by Hilbert and Ackermann (1928) and solved by Gödel (1929): Theorem 3.1 (Gödel’s completeness theorem) For every predicate language P and for every set T ∪ { ϕ } of P -formulas : T ⊢ CL ∀ ϕ T | iff = CL ∀ ϕ Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 10 / 79

  10. Some history 1947 Henkin: alternative proof of Gödel’s completeness theorem 1961 Mostowski: interpretation of existential (resp. universal) quantifiers as suprema (resp. infima) 1963 Rasiowa, Sikorski: first-order intuitionistic logic 1963 Hay: infinitary standard Łukasiewicz first-order logic 1969 Horn: first-order Gödel–Dummett logic 1974 Rasiowa: first-order implicative logics 1990 Novák: first-order Pavelka logics 1992 Takeuti, Titani: first-order Gödel–Dummett logic with additional connectives 1998 Hájek: first-order axiomatic extensions of HL 2005 Cintula, Hájek: first-order core fuzzy logics 2011 Cintula, Noguera: first-order semilinear logics Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 11 / 79

  11. Basic syntax is the again the same Let L be G or ❾ and L be G or MV correspondingly Predicate language: P = � P , F , ar � Object variables: denumerable set OV P -terms, (atomic) P -formulas, P -theories: as in CL ∀ free/bounded variables, substitutable terms, sentences: as in CL ∀ Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 13 / 79

  12. Recall classical semantics Classical P -structure: a tuple M = � M , � P M � P ∈ P , � f M � f ∈ F � where M � = ∅ P M ⊆ M n , for each n -ary P ∈ P f M : M n → M for each n -ary f ∈ F . M -evaluation v : a mapping v : OV → M For x ∈ OV , m ∈ M , and M -evaluation v , we define v [ x : m ] as � if y = x m v [ x : m ]( y ) = v ( y ) otherwise Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 14 / 79

  13. Reformulating classical semantics Classical P -structure: a tuple M = � M , � P M � P ∈ P , � f M � f ∈ F � where M � = ∅ P M : M n → { 0 , 1 } , for each n -ary P ∈ P f M : M n → M for each n -ary f ∈ F . M -evaluation v : a mapping v : OV → M For x ∈ OV , m ∈ M , and M -evaluation v , we define v [ x : m ] as � if y = x m v [ x : m ]( y ) = v ( y ) otherwise Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 15 / 79

  14. And now the ‘fuzzy’ semantics for logic L . . . A - P -structure ( A ∈ L ): a tuple M = � M , � P M � P ∈ P , � f M � f ∈ F � where M � = ∅ P M : M n → A , for each n -ary P ∈ P f M : M n → M for each n -ary f ∈ F . M -evaluation v : a mapping v : OV → M For x ∈ OV , m ∈ M , and M -evaluation v , we define v [ x : m ] as � if y = x m v [ x : m ]( y ) = v ( y ) otherwise Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 16 / 79

  15. Recall classical Tarski truth definition Interpretation of P -terms � x � M = v ( x ) for x ∈ OV v � f ( t 1 , . . . , t n ) � M f M ( � t 1 � M v , . . . , � t n � M for n -ary f ∈ F = v ) v Truth-values of P -formulas � P ( t 1 , . . . , t n ) � M �� t 1 � M v , . . . , � t n � M v = 1 iff v � ∈ P M for n -ary P ∈ P � M � � v = 0 � 0 � α ∧ β � M � α � M v = 1 and � β � M v = 1 iff v = 1 � α ∨ β � M � α � M v = 1 or � β � M v = 1 iff v = 1 � α → β � M � α � M v = 0 or � β � M v = 1 iff v = 1 � ( ∀ x ) ϕ � M for each m ∈ M we have � ϕ � M v = 1 iff v [ x : m ] = 1 � ( ∃ x ) ϕ � M there is m ∈ M such that � ϕ � M v = 1 iff v [ x : m ] = 1 Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 17 / 79

  16. Reformulating classical Tarski truth definition Interpretation of P -terms � x � M = v ( x ) for x ∈ OV v � f ( t 1 , . . . , t n ) � M f M ( � t 1 � M v , . . . , � t n � M for n -ary f ∈ F = v ) v Truth-values of P -formulas � P ( t 1 , . . . , t n ) � M P M ( � t 1 � M v , . . . , � t n � M = v ) for n -ary P ∈ P v � M 2 � � = � 0 0 v � α ∧ β � M min ≤ 2 {� α � M v , � β � M = v } v � α ∨ β � M max ≤ 2 {� α � M v , � β � M v } = v v → 2 � β � M � α → β � M � α � M = v v � ( ∀ x ) ϕ � M inf ≤ 2 {� ϕ � M v [ x : m ] | m ∈ M } = v � ( ∃ x ) ϕ � M sup ≤ 2 {� ϕ � M = v [ x : m ] | m ∈ M } v Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 18 / 79

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend