11 fuzzy rule based models
play

11 Fuzzy Rule-Based Models Fuzzy Systems Engineering Toward - PowerPoint PPT Presentation

11 Fuzzy Rule-Based Models Fuzzy Systems Engineering Toward Human-Centric Computing Contents 11.1 Fuzzy rules as a vehicle of knowledge representation 11.2 General categories of fuzzy rules and their semantics 11.3 Syntax of fuzzy rules 11.4


  1. Examples of fuzzy implications Name Definition Comment f � ( A ( x ), B ( y )) = min [1, 1 − A ( x ) + B ( y )] Lukasiewicz  − + λ +  1 ( ) ( 1 ) ( ) A x B y = λ > -1 ( ( ) ( )) min  1  f A x , B y , Pseudo-Lukasiewicz λ + λ  1 ( )  A x 1 w = − w + w / ( ( ) ( )) min [ 1 ( 1 ( ) ( ) ) ] f A x , B y , A x B y Pseudo-Lukasiewicz w > 0 w ≤  1 if ( ) ( ) A x B y =  ( ( ) ( )) f a A x , B y Gaines  0 otherwise ≤  1 if ( ) ( ) A x B y =  ( ( ) ( )) f g A x , B y Gödel  ( ) otherwise B y ≤  1 if ( ) ( ) A x B y  = Goguen  ( ) ( ( ) ( )) B y f e A x , B y otherwise   ( ) A x Kleene = − f b ( A ( x ) , B ( y )) max [ 1 A ( x ) , B ( y )] = − + Reichenbach ( ( ) ( )) 1 ( ) ( ) ( )] f r A x , B y A x A x B y = − f z ( A ( x ) , B ( y )) max [ 1 A ( x ) , min ( A ( x ) , B ( y ))] Zadeh = − + 2 Klir-Yuan f k ( A ( x ) , B ( y )) 1 A ( x ) A ( x ) B ( y ) Pedrycz and Gomide, FSE 2007

  2. Example: f � = Lukasiewicz R � ( x,y ) = min{1, 1– A ( x )+ B ( y )} R � ( x,y ) = min{1, 1– A ( x )+ B ( y )} A ( x ) = A ( x ,4,5,6) ∀ ( A ( x ), B ( y )) ∈ [0,1] 2 B ( y ) = B ( y ,4,5,6) Pedrycz and Gomide, FSE 2007

  3. Example: f k = Klir–Yuan R k ( x,y ) = 1– A ( x )+ A ( x ) 2 B ( y ) R k ( x,y ) = 1– A ( x )+ A ( x ) 2 B ( y ) A ( x ) = A ( x ,4,5,6) ∀ ( A ( x ), B ( y )) ∈ [0,1] 2 B ( y ) = B ( y ,4,5,6) Pedrycz and Gomide, FSE 2007

  4. � Categories of fuzzy implications: 1. s-implications X Y = ∀ ∈ × ( ( ), ( )) ( ) ( ) ( ) f A x B y A x sB y x , y is = − ( ( ), ( )) max[ 1 ( ) ( )] Kleene f A x B y A x , B y b = − + ( ( ), ( )) min{ 1 1 ( ) ( )} Lukasiewic z f A x B y , A x B y g 2. r-implications X Y = ∈ ≤ ∀ ∈ × ( ( ), ( )) sup[ [ 0 1 ] | ( ) ( )] ( ) f A x B y c , A x t c B y x , y ir = min t ≤  1 if ( ) ( ) A x B y =  ( ( ), ( )) Gödel f A x B y g >  ( ) ( ) ( ) B y A x B y Pedrycz and Gomide, FSE 2007

  5. Semantics of gradual rules B ( y ) ≥ A ( x ) ∀ x ∈ X and ∀ y ∈ Y the more X is A , the more Y is B ⇒ B ( y ) 1.0 1.0 A ( x ) B Rd x y B Rd = { y ∈ Y | B ( y ) ≥ A ( x )} for each x ∈ X Pedrycz and Gomide, FSE 2007

  6. Example: R d = f a = Gaines ≥  1 if ( ) ( ) B y A x =  ( , ) R d x y  0 otherwise (a) Gradual rule Rd = fa 1 0.8 0.6 0.4 0.2 0 1 B(y) 1 A(x) 0.8 0.5 0.6 0.4 0.2 0 0 R d ( x,y ) R d ( x,y ) ∀ ( A ( x ), B ( y )) ∈ [0,1] 2 A ( x ) = A ( x ,3,5,7) B ( y ) = B ( y ,3,5,7) Pedrycz and Gomide, FSE 2007

  7. Main types of rule bases � Fuzzy rule base ≡ { R 1 , R 2 ,...., R N } ≡ finite family of fuzzy rules � Fuzzy rule base can assume various formats: 1. fuzzy graph R i : If X is A i then Y is B i is a fuzzy granule in X × Y , i = 1,..., N 2. fuzzy implication rule base R i : If X is A i then Y is B i is fuzzy implication , i = 1,..., N 3. functional fuzzy rule base R i : If X is A i then y = f i ( x ) is a functional fuzzy rule , i = 1,..., N Pedrycz and Gomide, FSE 2007

  8. Fuzzy graph � Fuzzy rule base R ≡ collection of rules R 1 , R 2 ,...., R N � Each fuzzy rule R i is a fuzzy granule (point) � Fuzzy graph ≡ R is a collection of fuzzy granules – granular approximation of a function N N = = × ( ) R � R � A B i i i = = i 1 i 1 – R = R 1 or R 2 or .... or R N – general form N = ( , ) [ ( ) ( )] R x y S A x tB y i i i = 1 Pedrycz and Gomide, FSE 2007

  9. Point (a) (b) 10 10 8 8 6 6 y P 4 4 B Point P in X × Y 2 2 0 0 P = A × B 1 0 0 2 4 6 8 x 10 B(y) A is a singleton in X (c) B is a singleton in Y 1 A A(x) 0 0 2 4 6 8 10 x Pedrycz and Gomide, FSE 2007

  10. Granule (a) (b) 10 10 8 8 B G 6 6 y 4 4 2 2 Granule G in X × Y 0 0 G = A × B 1 0 0 2 4 6 8 10 x B(y) (c) A is an interval in X B is an interval in Y 1 A A(x) 0 0 2 4 6 8 10 x Pedrycz and Gomide, FSE 2007

  11. Fuzzy granules ≡ fuzzy points (a) (b) Fuzzy granule R 10 10 8 8 R B 6 6 y 4 4 2 2 fuzzy granule R in X × Y 0 0 R = A × B 1 0 0 5 10 x B(y) (c) A is a fuzzy set on X B is a fuzzy set on Y 1 A A(x) 0 0 2 4 6 8 10 x Pedrycz and Gomide, FSE 2007

  12. Fuzzy rule base as a set fuzzy granules (b) Fuzzy granules Ri (a) 10 10 y 9 y R1 8 8 B1 R2 7 B2 R3 6 6 B3 R4 5 B4 R5 4 4 B5 3 2 2 1 0 1 0 0 B(y) 0 1 2 3 4 5 6 7 8 9 10 x (c) 1 A1 A2 A3 A4 A5 R i = A i × B i 0 0 2 4 6 8 x 10 Pedrycz and Gomide, FSE 2007

  13. Graph of a function f and its granular approximation R (a) function y = f(x) (b)Granular approximation of y = f(x) 12 12 y y 11 10 10 R i = A i × B i R1 9 8 8 R2 7 R3 6 6 R4 5 f 4 4 R5 R6 R7 3 R R8 2 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 0 2 4 6 8 10 12 x x f R Pedrycz and Gomide, FSE 2007

  14. Fuzzy rule base and fuzzy graph Example 1 (b)Fuzzy rule base as a fuzzy graph (t = min) 10 y 9 8 7 R = Union Ri 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 x R i = A i × B i ⇒ R i ( x , y ) = min [ A i ( x ), B i ( y )] R = ∪ R i ⇒ R ( x , y ) = max [ R i ( x , y ), i = 1,..., N ] Pedrycz and Gomide, FSE 2007

  15. Fuzzy rule base and fuzzy graph Example 2 (d) Fuzzy rule base as a fuzzy graph (t = product) 10 y 9 8 7 R = Union Ri 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 x R i = A i t B i ⇒ R i ( x , y ) = A i ( x ) B i ( y ) R = ∪ R i ⇒ R ( x , y ) = max [ R i ( x , y ), i = 1,..., N ] Pedrycz and Gomide, FSE 2007

  16. Fuzzy implication • Fuzzy rule base R ≡ collection of rules R 1 , R 2 ,...., R N • Each fuzzy rule R i is a fuzzy implication • Fuzzy rule base R is a collection of fuzzy relations • relation R is obtained using intersection N N N = = = ⇒ ( ) R � R � f � A B i i i i = = = i 1 i 1 i 1 • R = R 1 and R 2 and .... and R N • general form N = ( ( ) ( )) R T f A x , B y i i i i = 1 Pedrycz and Gomide, FSE 2007

  17. Fuzzy rule as an implication (a) (b) Lukasiewicz implication R 10 10 8 8 B 6 6 R y 4 4 2 2 fuzzy rule R in X × Y 0 0 1 0 0 2 4 6 8 10 B(y) x R = f � ( A , B ) (c) Lukasiewicz implication 1 A A(x) 0 0 2 4 6 8 10 x Pedrycz and Gomide, FSE 2007

  18. Fuzzy rule base and fuzzy implication Example 1a (b) Fuzzy rule base as Lukasiewicz implication (t = min) 10 9 8 7 6 5 y 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 x R i = f � ( A , B ) ⇒ R i ( x , y ) = min [1, 1 – A i ( x ) + B i ( y )] Lukasiewicz implication R = ∩ R i ⇒ R ( x , y ) = min [ R i ( x , y ), i = 1,..., 5] min t-norm Pedrycz and Gomide, FSE 2007

  19. Fuzzy rule base and fuzzy implication Example 1b (b) Fuzzy rule base as Lukasiewicz implication (t = min) 10 9 8 7 6 5 y 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 x R i = f � ( A , B ) ⇒ R i ( x , y ) = min [1, 1 – A i ( x ) + B i ( y )] Lukasiewicz implication R = ∩ R i ⇒ R ( x , y ) = R 1 ( x , y ) t l R 2 ( x , y ) t l .... t l R i ( x , y ) Lukasiewicz t-norm Pedrycz and Gomide, FSE 2007

  20. Fuzzy rule base and fuzzy implication Example 2a (b) Fuzzy rule base as Zadeh implication (t = min) 10 y 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 x R i = f z ( A , B ) ⇒ R i ( x , y ) = max [1 – A i ( x ), min( A i ( x ), B i ( y )] Zadeh implication R = ∩ R i ⇒ R ( x , y ) = min [ R i ( x , y ), i = 1,..., 5] min t-norm Pedrycz and Gomide, FSE 2007

  21. Fuzzy rule base and fuzzy implication Example 2b (d) Fuzzy rule base as Zadeh implication (t = Lukasiewicz) 10 y 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 x 10 R i = f z ( A , B ) ⇒ R i ( x , y ) = max [1 – A i ( x ), min( A i ( x ), B i ( y )] Zadeh implication R = ∩ R i ⇒ R ( x , y ) = R 1 ( x , y ) t l R 2 ( x , y ) t l .... t l R i ( x , y ) Lukasiewicz t-norm Pedrycz and Gomide, FSE 2007

  22. Data base � Data base contains definitions of: – universes – scaling functions of input and output variables – granulation of the universes membership functions � Granulation – granular constructs in the form of fuzzy points – granules along different regions of the universes � Construction of membership functions – expert knowledge – learning from data Pedrycz and Gomide, FSE 2007

  23. Granulation X X granular constructs in granules along different the form of fuzzy points regions of the universes Pedrycz and Gomide, FSE 2007

  24. Fuzzy inference � Basic idea of inference (a) 12 x = a y ac y = f ( x ) 10 y = b 8 6 I b b = Proj Y ( a c ∩ f ) 4 f ⇓ 2 b = Proj Y ( I ) 0 a 0 2 4 6 8 10 12 x Pedrycz and Gomide, FSE 2007

  25. � Inference involves operations with sets (b) 12 x = A y y = f ( x ) 10 Ac B = f ( A ) ={ f ( x ), x ∈ A } 8 6 d I B = Proj Y ( A c ∩ f ) B 4 c f ⇓ 2 A B = Proj Y ( I ) 0 a 0 2 4 6 8 10 x 12 b Pedrycz and Gomide, FSE 2007

  26. � Inference involving sets and relations (a) 12 x is A y ( x , y ) is R 10 Ac y is B 8 6 B I B = Proj Y ( A c ∩ R ) 4 R f ⇓ 2 A B = Proj Y ( I ) 0 0 2 4 6 8 10 12 x Pedrycz and Gomide, FSE 2007

  27. Fuzzy inference ands operations with fuzzy sets and relations (b) 12 y Ac 10 8 ( fuzzy set on X ) X is A ( X , Y ) is R ( fuzzy relation on X × Y ) R 6 B I Y is B ( fuzzy set on Y ) 4 f 2 A 2 4 6 8 10 x 12 B = Proj Y ( A c ∩ R ) ⇓ = ⇒ ( ) sup { ( ) ( )} B y A x tR x , y B = Proj Y ( I ) x X ∈ Pedrycz and Gomide, FSE 2007

  28. Fuzzy inference � Compositional rule of inference X is A ( X , Y ) is R Y is B = � B A R X is A ( X , Y ) is R Y is A o R Pedrycz and Gomide, FSE 2007

  29. Fuzzy inference procedure procedure FUZZY-INFERENCE ( A , R ) returns a fuzzy set input : fuzzy relation: R fuzzy set: A local : x , y : elements of X and Y t : t-norm for all x and y do A c ( x , y ) ← A ( x ) for all x and y do I ( x , y ) ← A c ( x , y ) t R ( x , y ) B ( y ) ← sup x I ( x , y ) return B Pedrycz and Gomide, FSE 2007

  30. Example: compositional rule of inference Pedrycz and Gomide, FSE 2007

  31. Example: fuzzy inference with fuzzy graph Pedrycz and Gomide, FSE 2007

  32. 11.5 Types of rule-based systems and architectures Pedrycz and Gomide, FSE 2007

  33. Linguistic fuzzy models X is A and Y is B P : input If X is A 1 and Y is B 1 then Z is C 1 R 1 : ...................... If X is A i and Y is B i then Z is C i R i : rule base ....................... If X is A N and Y is B N then Z is C N R N : Z : Z is C output � all fuzzy sets A , B , A i ,s and B i ,s are given � rule and connectives ( and , or ) with known semantics � membership function of fuzzy set C = ?? Pedrycz and Gomide, FSE 2007

  34. min-max models Assume P : X is A and Y is B P ( x , y ) = min{ A ( x ), B ( y )} R i : If X is A i and Y is B i then Z is C i R i ( x , y , z ) = min{ A i ( x ), B i ( y ), C i ( z )} i = 1,..., N Using the compositional rule of inference (t = min) N = = � � C P R P � R i = 1 i = = ( ) sup {min[ ( ), max( ( ), 1 )]} C z P x , y R x , y , z i ,...,N i x , y Pedrycz and Gomide, FSE 2007

  35. N N N ′ = = = = � � � � � ( � ) C P R P R P R C i i i = = = 1 1 1 i i i ′ = � C P R i i ′ = = ∧ ∧ ∧ ∧ ( ) sup {min[ ( ), ( )]} sup { ( ) ( ) ( ) ( ) ( )]} C z P x , y R x , y , z A x B y A x B y C z i i i i i x , y x , y ∧ = = sup [ ( ) ( )] Poss( ) A x A x A , A m i i i x ∧ = = sup [ ( ) ( )] Poss( ) B y B y B , B n i i i y ′ = ∧ ∧ ( ) ( ) C z m n C z i i i i = ∧ = = ∧ = λ � � ( ) max{( ) 1 } max{ ( ), 1 } C z m n C , i , , N C z i , , N i i i i i − λ is the degree of activation of i th rule i Pedrycz and Gomide, FSE 2007

  36. min-max fuzzy model processing procedure MIN-MAX-MODEL ( A , B ) returns a fuzzy set local : fuzzy sets: A i , B i , C i , i =1,.., N activation degrees: λ i Initialization C = ∅ for i = 1: N do m i = max (min ( A , A i )) n i = max (min ( B , B i )) λ i = min ( m i , n i ) if λ i ≠ 0 then C i ’ = min ( λ i , C i ) and C = max( C , C i ’ ) return C Pedrycz and Gomide, FSE 2007

  37. Example: min-max fuzzy model processing A i A j A B i B B j C i C j 1 1 1 m j ’ C j n j n j n i ’ C i m i m i x y z Pedrycz and Gomide, FSE 2007

  38. min-max fuzzy model architecture A 1 , B 1 C 1 λ 1 ’ Poss Min C 1 A i , B i C i C λ i Poss ( A , B ) Min Max ’ C i A N , B N C N λ N ’ Poss Min C N Pedrycz and Gomide, FSE 2007

  39. � Special case: numeric inputs = =   1 if 1 if x x y y o o = =   ( ) ( ) A x and B y   0 otherwise 0 otherwise � Numeric output ∫ ( ) zC z dz Z = centroid defuzzific ation z ∫ ( ) C z dz Z N ∑ ∧ ( ) m n v i i i = 1 = i weighted average modal values z v i N ∑ ∧ ( ) m n i i = 1 i Pedrycz and Gomide, FSE 2007

  40. Example ( x o , y o ), ∀ x o , y o ∈ [-2, 2] X is x o and Y is y o P : inputs If X is A 1 and Y is B 1 then Z is C 1 R 1 : rules If X is A 2 and Y is B 2 then Z is C 2 R 2 : N = 2, centroid defuzzification (a) Input and output fuzzy sets (b) Input-output mapping A1 A2 1 Ai(x) 0.5 0.5 0 z -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x 0 B2 B2 1 -0.5 Bi(y) 0.5 0 -2 y -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 y -1 C1 C2 1 0 Ci(z) 0.5 -2 x 1 -1 0 0 1 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 z 2 2 Pedrycz and Gomide, FSE 2007

  41. min-sum models � Assume P : X is A and Y is B P ( x , y ) = min{ A ( x ), B ( y )} R i : If X is A i and Y is B i then Z is C i R i ( x , y , z ) = min{ A i ( x ), B i ( y ), C i ( z )} i = 1,..., N � Using the compositional rule of inference (t = min) ′ = ∧ ∧ ∧ ∧ ( ) sup [ ( ) ( ) ( ) ( ) ( )] C z A x B y A x B y C z i i i i x , y Additive fuzzy models N (Kosko, 1992) ∑ ′ = ( ) C z w C i i = i 1 Pedrycz and Gomide, FSE 2007

  42. Example: min-sum fuzzy model processing A i A j A B i B B j C i C j 1 1 1 ∑ C i m j ’ n j n j n i ’ ’ C j C i m i m i x y z Pedrycz and Gomide, FSE 2007

  43. min-sum fuzzy model architecture A 1 , B 1 C 1 λ 1 Poss Min C 1 ’ A i , B i w 1 C i C w i λ i Poss ∑ ( A , B ) Min C i ’ A N , B N C N w N λ N Poss Min C N ’ Pedrycz and Gomide, FSE 2007

  44. Example ( x o , y o ), ∀ x o , y o ∈ [-2, 2] X is x o and Y is y o P : inputs If X is A 1 and Y is B 1 then Z is C 1 R 1 : rules If X is A 2 and Y is B 2 then Z is C 2 R 2 : N = 2 w 1 = w 2 = 1, centroid defuzzification (a) Input and output fuzzy sets (b) Input-output mapping A1 A2 1 Ai(x) 0.5 0.5 0 z -2 -1.5 -1 -0.5 0 0.5 1 1.5 x 2 0 B2 B2 1 -0.5 Bi(y) 0.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 y 2 y -1 C1 C2 1 0 Ci(z) 0.5 -2 x 1 -1 0 0 1 2 z -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2 Pedrycz and Gomide, FSE 2007

  45. product-sum models 1- Product–probabilistic sum (b) Input-output mapping of product-probabilistic sum model ′ = ( ) ( ) C z m n C z 0.5 i i i i z 0 -0.5 N ′ = ( ) ( ) C z S C z -2 p i y = -1 1 i 0 -2 x 1 -1 0 1 2 2 2- Product–sum (d) Input-output mapping of product-sum model 0.5 ′ = ( ) ( ) C z m n C z z i i i i 0 -0.5 N -2 ∑ = ′ y ( ) ( ) C z C z i -1 = 1 i 0 -2 x 1 -1 0 1 2 2 Pedrycz and Gomide, FSE 2007

  46. 3 - Bounded product-bounded sum ′ = ⊗ ⊗ (c) Input-output mapping of bounded product-bounded sum model ( ) ( ) C z m n C z i i i i 1 N z ′ = ⊕ 0.5 ( ) ( ) C z C z i = 1 i 0 -0.5 ⊗ = + − max{ 0 1 } a b , a b -1 -2 y ⊕ = + -1 min{ 1 } a b , a b 0 -2 1 x -1 ∈ [ 0 1 ] a,b , 0 1 2 2 Pedrycz and Gomide, FSE 2007

  47. Functional fuzzy models X is x and Y is y P : input If X is A 1 and Y is B 1 then z = f 1 ( x , y ) R 1 : ...................... If X is A i and Y is B i then z = f i ( x , y ) R i : rule base ....................... If X is A N and Y is B N then z = f N ( x , y ) R N : λ i ( x , y ) = A i ( x ) t B i ( y ) t = t-norm degree of activation N λ ∑ = = i ( ) ( ) z w x , y f x , y , w i i i output N = 1 ∑ i λ ( ) x , y i = 1 i Pedrycz and Gomide, FSE 2007

  48. Functional fuzzy model architecture f 1 ( x , y ) A 1 , B 1 w 1 × ⊗ f 2 ( x , y ) A i , B i z w i ⊗ × ∑ ( x , y ) f N ( x , y ) A N , B N w N ⊗ × Pedrycz and Gomide, FSE 2007

  49. Example 1 x ∈ [0, 3] P : X is x inputs If X is A 1 then z = x R 1 : rules If X is A 2 then z = – x + 3 R 2 : (a) Antecedent fuzzy sets (b) Consequent functions 1.2 3 Ai A1 A2 y 1 2.5 0.8 2 f2 f1 0.6 1.5 0.4 1 0.5 0.2 0 0 x 0 0.5 1 1.5 2 2.5 x 3 0 0.5 1 1.5 2 2.5 3 Pedrycz and Gomide, FSE 2007

  50. ∈  if ( 0 1 ] x x ,  = + − + ∈  ( ) ( )( 3 ) if [ 1 2 ] z A x x A x x x , 1 2  − + ∈  3 if [ 2 3 ) x x , (b) Output of the functional model 2 y 1.8 1.6 1.4 1.2 output 1 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 x 3 Pedrycz and Gomide, FSE 2007

  51. Example 2 x ∈ [0, 3] P : X is x inputs If X is A 1 then y = – sin(2 x ) R 1 : If X is A 2 then y = – 0 . 5 x rules R 2 : If X is A 3 then y = sin( 3x ) R 3 : output (a) Antecedent fuzzy sets (b) output of the functional fuzzy model 1.2 1.5 y y A2 A3 A1 1 1 0.8 0.5 0.6 0 0.4 -0.5 0.2 -1 0 -1.5 -5 -4 -3 -2 -1 0 1 2 3 4 x 5 -5 -4 -3 -2 -1 0 1 2 3 4 5 x Pedrycz and Gomide, FSE 2007

  52. Example 2 x ∈ [0, 3] P : X is x inputs If X is A 1 then y = – 1 R 1 : If X is A 2 then y = x R 2 : rules If X is A 3 then y = 1 R 3 : output (a) Antecedent fuzzy sets (c) output of the functional fuzzy model 1.2 1.5 y y A2 A3 A1 1 1 0.8 0.5 0.6 0 0.4 -0.5 0.2 -1 0 -1.5 -5 -4 -3 -2 -1 0 1 2 3 4 x 5 -5 -4 -3 -2 -1 0 1 2 3 4 5 x Pedrycz and Gomide, FSE 2007

  53. Gradual fuzzy models R i : The more X is A i the more Z is C i i = 1,..., N ≥  1 if ( ) ( ) C z A x i i =  ( , ) R x y i  0 otherwise N N ′ = = � � ( ) C C C α α i i i = = 1 1 i i Pedrycz and Gomide, FSE 2007

  54. Gradual fuzzy model architecture A 1 C 1 α 1 ’ Poss C 1 C α 1 A i C i C α i Poss C α 1 Min x ’ C i A N C N α N ’ Poss C N C α 1 Pedrycz and Gomide, FSE 2007

  55. Example: gradual fuzzy model processing A 1 A 2 C 1 C 2 1 1 α 1 α 1 ’ ’ C 1 C 2 α 2 α 2 x z Pedrycz and Gomide, FSE 2007

  56. Example inputs x ∈ [0, 3] P : X is x R 1 : The more X is A 1 the more Z is C 1 rules R 2 : The more X is A 1 the more Z is C 1 output 4 A1 A2 1 z 0.8 3.5 0.6 Ai 0.4 3 0.2 0 1 1.5 2 2.5 3 3.5 x 4 2.5 C1 C2 1 2 0.8 0.6 Ci 1.5 0.4 0.2 0 1 z 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 x Pedrycz and Gomide, FSE 2007

  57. 11.6 Approximation properties of fuzzy rule-based models Pedrycz and Gomide, FSE 2007

  58. � FRBS uniformly approximates continuous functions – any degree of accuracy – closed and bounded sets � Universal approximation with (Wang & Mendel, 1992): – algebraic product t-norm in antecedent – rule semantics via algebraic product – rule aggregation via ordinary sum – Gaussian membership functions – sup-min compositional rule of inference – pointwise inputs – centroid defuzzification Pedrycz and Gomide, FSE 2007

  59. � Universal approximation when (Kosko, 1992): – min t-norm in antecedent – rule aggregation via ordinary sum – symmetric consequent membership functions – sup-min compositional rule of inference – pointwise inputs – centroid defuzzification (additive models) Pedrycz and Gomide, FSE 2007

  60. � Universal approximation with (Castro, 1995): – arbitrary t-norm in antecedent – rule semantics: r-implications or conjunctions – triangular or trapezoidal membership functions – sup-min compositional rule of inference – pointwise inputs – centroid defuzzification Pedrycz and Gomide, FSE 2007

  61. 11.7 Development of rule-based systems Pedrycz and Gomide, FSE 2007

  62. Expert-based development � Knowledge provided by domain experts – basic concepts and variables – links between concepts and variables to form rules � Reflects existing knowledge – can be readily quantified – short development time Pedrycz and Gomide, FSE 2007

  63. Example: fuzzy control y u e + Fuzzy r Process Controller − R i : If Error is A i and Change of Error is B i then Control is C i R i : If e is A i and de is B i then u is C i Pedrycz and Gomide, FSE 2007

  64. R i : If e is A i and de is B i then u is C i y r e t Change of Error ( de ) / Error ( e ) NM NS ZE PS PM NB PM NB NB NB NM NM PM NB NS NM NM NS PM NS Z NS NM Z PM NS Z NS NM PS PM PS Z NS NM PM PM PM PS PM NM PB PM PM PM PM NM Pedrycz and Gomide, FSE 2007

  65. Data-driven development � Given a finite set of input/output pairs {( x k , y k ), k = 1,..., M } x k = [ x 1 k , x 2 k ,...., x nk ] ∈ R n z k = [ x k , y k ] ∈ R n +1 , k = 1,..., M � Clustering z k = [ x k , y k ] ∈ R n +1 , k = 1,..., M (e.g. using FCM) v 1 , v 2 ,...., v N prototypes/cluster centers v i ∈ R n +1 , i = 1,..., N � Idea: fuzzy clusters ≡ fuzzy rules Pedrycz and Gomide, FSE 2007

  66. Example R 3 R 2 v 3 v 2 R 4 R 1 v 4 v 1 Pedrycz and Gomide, FSE 2007

  67. � Projecting the prototypes in the input and output spaces v 1 [ y ], v 2 [ y ],...., v N [ y ] projections of prototypes in Y v 1 [ x ], v 2 [ x ],...., v N [ x ] projections of prototypes in X � R i : If X is A i then Y is C i , i = 1,..., N y y y x x x Pedrycz and Gomide, FSE 2007

  68. 11.8 Parameter estimation for functional rule-based systems Pedrycz and Gomide, FSE 2007

  69. � Functional fuzzy rules � R i : If X i 1 is A i 1 and ... and X in is A in then z = a i o + a i 1 x 1 + ....+ a in x n i = 1,..., N � Given input/output data: {( x 1 , y 1 ), ( x 2 , y 2 ),....,( x M , y M )} � Let a i = [ a i o , a i 1 , a i 2 ,...., a in ] T � Output of functional models N λ ( ) x ∑ = x a = i k ( ) ˆ y w f , , w k ik i k i ik N = ∑ 1 i λ ( ) x i k = 1 i � Output for linear consequents N = ∑ T T T z a z = x [ 1 ] y ˆ , , w k i ik ik ik k = 1 i Pedrycz and Gomide, FSE 2007

  70. Let a a     1 1 [ ]     a a  2   2  T T T a z z z = = � y ˆ k   1 2   k k Nk � �     a a     N N and   T T T z z z   � y ˆ 1   11 12 1 N   T T T  z z z  ˆ y �   2 y = = 12 22 2 Z N     � � � � �      T T T  z z z   y ˆ �   M NM 1 2 M M then y = Z a Pedrycz and Gomide, FSE 2007

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend