5 operations and aggregations of fuzzy sets
play

5 Operations and Aggregations of Fuzzy Sets Fuzzy Systems - PowerPoint PPT Presentation

5 Operations and Aggregations of Fuzzy Sets Fuzzy Systems Engineering Toward Human-Centric Computing Contents 5.1 Standard operations on sets and fuzzy sets 5.2 Generic requirements for operations on fuzzy sets 5.3 Triangular norms 5.4


  1. Example f = – log(1 – x ) f ( a ) + f ( b ) = – log(1 – a ) – log(1 – b ) – (log(1 – a ) + log(1 – b )) – log(1 – a )(1 – b ) f - –1 ( f ( a ) + f ( b )) = 1 – e log(1 – a )(1 – b ) = a + b – ab � a s f b = a + b – ab ( Archimedean t-conorm) Pedrycz and Gomide, FSE 2007

  2. Multiplicative generators � g : [0,1] → [0, 1], g (0) = 1 – continuous – strictly decreasing � a s g b = g –1 ( g ( a )g( b )) ⇔ is a Archimedean t-norm Pedrycz and Gomide, FSE 2007

  3. Multiplicative generators of t-conorms R + g ( a ) g ( x ) g ( b ) g ( a ) g ( b ) a a s g b x b 1.0 R + ≡ [0, ∞ ), Pedrycz and Gomide, FSE 2007

  4. Example � g = 1 – x a s g b = a + b – ab ( Archimedean t-norm) � g = e – f ( x ) multiplicative and additive generators → same t-conorm Pedrycz and Gomide, FSE 2007

  5. Ordinal sums denoted s o = ( <α k , β k , s k > , k ∈ K ) s o : [0,1] → [0, 1]   − α − α  a b k k  α + β − α   ∈ α β s , a , b , ( ) if [ ]   k k k k k k σ = s a , b , I ,  β − α β − α ( )   o k k k k  a , b  max( ) otherwise I = {[ α k , β k ], k ∈ K } � nonempty, countable family � pairwise disjoint subintervals of [0,1] σ = { s k , k ∈ K } � family of t-conorms Pedrycz and Gomide, FSE 2007

  6. Example + − + − ∈ . a . b . - a- . b- . a , b . , .  0 2 ( 0 2 ) ( 0 2 ) 5 ( 0 2 )( 0 2 ) if [ 0 2 0 4 ]  σ = + − + − ∈ s a , b , I , . . a . b . , , a , b . , .  ( ) 0 5 0 2 min(5( 0 2 ) 5 ( 0 2 0 ) 1 ) if [ 0 5 0 7 ] o  a , b  max( ) otherwise I = {[0.2, 0.4], [0.5, 0.7]} K ={1,2} σ = { s p , s l }, s 1 = s p , s 2 = s l Pedrycz and Gomide, FSE 2007

  7. + − + − ∈ . a . b . - a- . b- . a , b . , .  0 2 ( 0 2 ) ( 0 2 ) 5 ( 0 2 )( 0 2 ) if [ 0 2 0 4 ]  σ = + − + − ∈ s a , b , I , . . a . b . , , a , b . , .  ( ) 0 5 0 2 min(5( 0 2 ) 5 ( 0 2 0 ) 1 ) if [ 0 5 0 7 ] o  a , b  max( ) otherwise Pedrycz and Gomide, FSE 2007

  8. + − + − ∈ . a . b . - a- . b- . a , b . , .  0 2 ( 0 2 ) ( 0 2 ) 5 ( 0 2 )( 0 2 ) if [ 0 2 0 4 ]  σ = + − + − ∈ s a , b , I , . . a . b . , , a , b . , .  ( ) 0 5 0 2 min(5( 0 2 ) 5 ( 0 2 0 ) 1 ) if [ 0 5 0 7 ] o  a , b  max( ) otherwise Pedrycz and Gomide, FSE 2007

  9. 5.5 Triangular norms as general category of logical operators Pedrycz and Gomide, FSE 2007

  10. Motivation � Fuzzy propositions involves linguistic statements: – temperature is low and humidity is high – velocity is high or noise level is low � Logical operations: – and ( ∧ ) – or ( ∨ ) Pedrycz and Gomide, FSE 2007

  11. Truth value assignment L = { P, Q, .... } P , Q , ... atomic statements truth: L → [0, 1] p , q ,... ∈ [0, 1] truth ( P and Q ) = truth ( P ∧ Q ) → p ∧ q = p t q truth ( P or Q ) = truth ( P ∨ Q ) → p ∨ q = p s q Pedrycz and Gomide, FSE 2007

  12. Examples p q min( p , q ) max( p , q ) pq p + q – pq 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0.2 0.5 0.2 0.5 0.1 0.6 0.5 0.8 0.5 0.8 0.4 0.9 0.8 0.7 0.7 0.8 0.56 0.94 Pedrycz and Gomide, FSE 2007

  13. Implication induced by a t-norm a ϕ b ≡ a ⇒ b a ϕ b = sup { c ∈ [0, 1] | a t c ≤ b } ∀ a , b ∈ [0,1] residuation ϕ operator or Boolean values of its arguments a ⇒ b a ϕ b a b 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 1 Pedrycz and Gomide, FSE 2007

  14. 5.6 Aggregation operations Pedrycz and Gomide, FSE 2007

  15. Definition g : [0,1] n → [0,1] 1. Monotonicity: g ( x 1 , x 2 ,..., x n ) ≥ g ( y 1 , y 2 ,.., y n ) if x i ≥ y i , i = 1,.., n 2. Boundary conditions: g (0, 0,..., 0) = 0 g (1, 1,..., 1) = 1 Pedrycz and Gomide, FSE 2007

  16. 1. Neutral element ( e ) : g ( x 1 , x 2 ,..., x i-1 , e , x i +1 ,..., x n ) = g ( x 1 , x 2 ,..., x i-1 , e , x i +1 ,..., x n ) n ≥ 2 2. Annihilator ( l ): g ( x 1 , x 2 ,..., x i-1 , l , x i +1 ,..., x n ) = l Observation: Annihilator ≡ absorbing element Pedrycz and Gomide, FSE 2007

  17. Averaging operations n 1 p = p ∈ R ≠ g x , x , , x ∑ x , p , p � ( ) ( ) 0 n i 1 2 n = i 1 n 1 = = p g x , x , , x ∑ x � 1 ( ) arithmetic mean n i 1 2 n = i 1 n → = p g x , x , , x x ∏ n � 0 ( ) geometric mean n i 1 2 = i 1 n = − = p g x , x , , x � 1 ( ) n harmonic mean 1 2 n ∑ / x 1 i = i 1 Pedrycz and Gomide, FSE 2007

  18. p → – ∝ g ( x 1 , x 2 ,..., x n ) = min ( x 1 , x 2 ,..., x n ) p → ∝ g ( x 1 , x 2 ,..., x n ) = max ( x 1 , x 2 ,..., x n ) Bounds min ( x 1 , x 2 ,..., x n ) ≤ g ( x 1 , x 2 ,..., x n ) ≤ max ( x 1 , x 2 ,..., x n ) Pedrycz and Gomide, FSE 2007

  19. Examples Arithmetic mean (b) Arithmetic mean of A and B 1.2 1 0.8 A B 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7 8 x Pedrycz and Gomide, FSE 2007

  20. Geometric mean (d) Geometric mean of A and B 1.2 1 0.8 A B 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7 8 x Pedrycz and Gomide, FSE 2007

  21. Harmonic mean (f) Harmonic mean of A and B 1.2 1 0.8 A B 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7 8 x Pedrycz and Gomide, FSE 2007

  22. Ordered Weighted Averaging (OWA) n w = A ∑ w A x OWA( , ) ( ) i i = i 1 Σ w i = 1, w i ∈ [0, 1] A ( x 1 ) ≤ A ( x 2 ) ≤ ... ≤ A ( x n ) Pedrycz and Gomide, FSE 2007

  23. Examples 1. w = [1, 0,...,0] OWA( A , w ) = min ( A ( x 1 ), A ( x 2 ),..., A ( x n )) 2. w = [0, 0,...,1] OWA( A , w ) = max ( A ( x 1 ), A ( x 2 ),..., A ( x n )) 3. w = [1/ n , 1/ n ,...,1/ n ] OWA( A , w ) = arithmetic mean min ( A ( x 1 ), A ( x 2 ),..., A ( x n )) ≤ OWA( A , w ) ≤ max ( A ( x 1 ), A ( x 2 ),..., A ( x n )) Pedrycz and Gomide, FSE 2007

  24. Examples w = [0.8, 0.2] (h) Owa of A and B, w1 = 0.8, w2 = 0.2 1.2 1 0.8 A B 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7 8 x Pedrycz and Gomide, FSE 2007

  25. w = [0.2, 0.8] (f) Owa of A and B, w1 = 0.2, w2 = 0.8 1.2 1 0.8 A B 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7 8 x Pedrycz and Gomide, FSE 2007

  26. Uninorms u : [0,1] × [0,1] → [0,1] a u b = b u a � Commutativity: a u ( b u c ) = ( a u b ) u c � Associativity: if b ≤ c then a u b ≤ a u c � Monotonicity: a u e = a ∀ a ∈ [0, 1] � Identity: e ∈ [0, 1], e = 1 u is a t-norm, e = 0 u is a t-conorm Pedrycz and Gomide, FSE 2007

  27. Results on uninorms 1. t u , s u : [0, 1] × [0, 1] → [0, 1] such that ∀ e ∈ [0, 1] ea u eb ( ) ( ) = at b u e + − + − − e e a u e e b e ( ( 1 ) ) ( ( 1 ) ) = as b u − e 1 − − t s and are t norm and t conorm u u Pedrycz and Gomide, FSE 2007

  28. 2. If a ≤ e ≤ b or a ≥ e ≥ b then ≤ ≤ ≥ ≥ a e b a e b If or then ≤ ≤ a b aub a b min( , ) max( , ) Pedrycz and Gomide, FSE 2007

  29. 3. For any u with e ∈ [0, 1] ≤ ≤ au b aub au b w s ≤ ≤ a , b e  0 if 0  = ≤ ≤ au b a , b e a , b  max( ) if 1 w  a , b  min( ) otherwise ≤ ≤ a , b a , b e  min( ) if 0  = ≤ ≤ au b e a , b  1 if 1 s  a , b  max( ) otherwise Pedrycz and Gomide, FSE 2007

  30. 4. Conjunctive and disjunctive uninorm = u if ( 0 1 ) 0 then a b  ≤ ≤ e t a , b e ( ) ( ) if 0  e e  − −  a e b e = + − ≤ ≤ au b e e ) s ) e a , b  ( 1 )( ( if 1 c − − e e 1 1  a , b min( ) otherwise    = u if ( 0 1 ) 1 then a b  ≤ ≤ e t a , b e ( ) ( ) if 0  e e   − − a e b e = + − ≤ ≤ au b e e ) s ) e a , b  ( 1 )( ( if 1 d − − e e 1 1  a , b max( ) otherwise    Pedrycz and Gomide, FSE 2007

  31. Conjunctive uninorm e = 0.5 Pedrycz and Gomide, FSE 2007

  32. Disjunctive uninorm e = 0.5 Pedrycz and Gomide, FSE 2007

  33. 5. Almost continuous Archimedian uninorms a u a < a for 0 < a < e a u a > a for e < a < 1 6. Additive and multiplicative generators of almost continuous uninorms a u f b = f –1 ( f ( a ) + f ( b )) a u g b = g –1 ( g ( a )g( b )) g ( x ) = e – f ( x ) f strictly increasing g strictly decreasing Pedrycz and Gomide, FSE 2007

  34. 7. Ordinal sum   − α − α  a b k k α + β − α   ∈ ι t , a , b ( ) if [ ]    k k k k 1 β − α β − α   k k k k    − α − α a b  k k  α + β − α   ∈ ι s , a , b ( ) if [ ]   k k k k τ σ = u a , b , , , ι 2  β − α β − α ( )   co k k k k  ∉ a,b , β α if [ ] k k  a , b max( ) ≥ a , b e  and  a , b  min( ) otherwise l = {[ α k , β k ], k ∈ K } l 1 = {[ α k , β k ] ∈ l | β k ≤ e } l 2 = {[ α k , β k ] ∈ l | α k ≥ e } τ = { t k , k ∈ K }, σ = { s k , k ∈ K } Pedrycz and Gomide, FSE 2007

  35.   − α − α  a b k k α + β − α   ∈ ι t , a , b ( ) if [ ]    k k k k 1 β − α β − α   k k k k    − α − α a b  k k  α + β − α   ∈ ι s , a , b ( ) if [ ]   k k k k τ σ = u a , b , , , ι 2  β − α β − α ( )   co k k k k  ∉ a,b , β α if [ ] k k  a , b min( ) ≤ a , b e  and  a , b  max( ) otherwise Pedrycz and Gomide, FSE 2007

  36. Nullnorms v : [0,1] × [0,1] → [0,1] a v b = b v a � Commutativity: a v ( b v c ) = ( a v b ) v c � Associativity: if b ≤ c then a v b ≤ a v c � Monotonicity: a v e = e ∀ a ∈ [0, 1] � Absorbing element: a v 0 = a ∀ a ∈ [0, e ] � Boundary conditions: a v 1 = a ∀ a ∈ [ e , 1] Pedrycz and Gomide, FSE 2007

  37. ea v eb ( ) ( ) = as b v e + − + − − e e a v e e b e ( ( 1 ) ) ( ( 1 ) ) = at b v − e 1 e ∈ [0, 1] v behaves as a t-norm in [0, e ] × [0, e ] v behaves as a t-conorm in [ e , 1] × [ e , 1] v = e in the rest of the unit square Pedrycz and Gomide, FSE 2007

  38. Example e = 0.5, t-norm = min, t-conorm = max Pedrycz and Gomide, FSE 2007

  39. Symmetric sums σ s ( a 1 , a 2 ,...., a n ) = 1 – σ s (1 – a 1 , 1 – a 2 ,...., 1 – a n ) − 1  − −  f a , a , , a � ( 1 1 ) n σ = + 1 2 a , a , , a � ( ) 1   s n 1 2 f a , a , , a  �  ( ) n 1 2 f increasing, continuous f (0,0,...,0) = 0 Pedrycz and Gomide, FSE 2007

  40. Example Symmetric sum of A and B 1.2 1 0.8 A B 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7 8 x f ( a , b ) = a 2 + b 2 Pedrycz and Gomide, FSE 2007

  41. Compensatory operations a � b = ( a t b ) 1 – γ ( a s b ) γ compensatory product a � b = (1 – γ )( a t b ) + γ ( a t b ) compensatory sum Pedrycz and Gomide, FSE 2007

  42. Example (b) (a) γ = 0.5, t-norm = min, t-conorm = max Pedrycz and Gomide, FSE 2007

  43. 5.7 Fuzzy measure and integral Pedrycz and Gomide, FSE 2007

  44. Fuzzy measure g : Ω → [0,1] g( ∅ ) = 0 • Boundary conditions: g ( X ) = 1 if A ⊂ B then g ( A ) ≤ g ( B ) • Monotonicity: Pedrycz and Gomide, FSE 2007

  45. λ λ λ λ –fuzzy measure g ( A ∪ B ) = g ( A ) + g ( B ) + λ g ( A ) g ( B ), λ > − 1 • λ = 0 g ( A ∪ B ) = g ( A ) + g ( B ) additive • λ > 0 g ( A ∪ B ) ≥ g ( A ) + g ( B ) super-additive • λ < 0 g ( A ∪ B ) ≤ g ( A ) + g ( B ) sub-additive Pedrycz and Gomide, FSE 2007

  46. Fuzzy integral h : X → [0,1] Ω measurable fuzzy integral of h with respect to g over A = α ∩ h x g , g A H ∫ � ( ) ( ) sup {min[ ( )] α A α ∈ , [ 0 1 ] H α = { x | h ( x ) ≥ α } Pedrycz and Gomide, FSE 2007

  47. X = { x 1 , x 2 ,...., x n } h ( x 1 ) ≥ h ( x 2 ) ≥ ..... ≥ h ( x n ) A 1 = { x 1 ), A 2 = { x 1 , x 2 ), ..., A n = { x 1 , x 2 ,..., x n } = X = h x g h x , g A ∫ � ( ) ( ) max {min[ ( ) ( )] i i A = i , ,n 1 � Pedrycz and Gomide, FSE 2007

  48. Example Fuzzy integral 1 0.9 0.8 0.7 g(Ai) 0.6 0.5 0.4 0.3 0.2 h(xi) 0.1 0 1 1.5 2 2.5 3 3.5 4 4.5 5 xi Pedrycz and Gomide, FSE 2007

  49. Choquet integral n = − Ch f g ∑ h x h x g A ∫ � ( ) [ ( ) ( )] ( ) + i i i 1 = i 1 h ( x n+ 1 ) = 0 Pedrycz and Gomide, FSE 2007

  50. 5.8 Negations Pedrycz and Gomide, FSE 2007

  51. Definition N : [0,1] → [0,1] 1. Monotonicity: N is nonincreasing 2. Boundary conditions: N (0) = 1 N (1) = 0 Pedrycz and Gomide, FSE 2007

  52. 3. Continuity: N is a continuous function 4. Involution: ∀ x ∈ [0, 1] N ( N ( x )) = x Pedrycz and Gomide, FSE 2007

  53. Examples 1.0 < x a  1 if = N x  ( ) ≥ x a  0 if x a 1.0 Pedrycz and Gomide, FSE 2007

  54. 1.0 = x  1 if 0 = N x  ( ) = x  0 if 1 x 1.0 Pedrycz and Gomide, FSE 2007

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend