fluid solid coupled convection diffusion in
play

Fluid/solid coupled convection/diffusion in unidirectional flows. - PowerPoint PPT Presentation

Introduction Analyse Numerical analysis Fluid/solid coupled convection/diffusion in unidirectional flows. Charles Pierre 1 , Franck Plourabou e 2 1 Laboratoire de Math ematiques et de leurs Applications, CNRS. Universit e de Pau. 2


  1. Introduction Analyse Numerical analysis Fluid/solid coupled convection/diffusion in unidirectional flows. Charles Pierre 1 , Franck Plourabou´ e 2 1 Laboratoire de Math´ ematiques et de leurs Applications, CNRS. Universit´ e de Pau. 2 IMFT, Institut de M´ ecanique des Fluides de Toulouse, CNRS. Universit´ e Paul Sabatier. October 15 th , 2008

  2. Introduction Analyse Numerical analysis 1- The problem : physical configuration Ω Ω × R n Ω 1 v 2 > 0 Ω 2 n 3 , 1 v 1 = 0 n 2 , 1 Ω 3 v 3 > 0 y + ∞ x −∞ z Heat transfer in an infinite cylinder with cross-section Ω. • 3 sub-domains : Ω 1 (solid), Ω 2 , 3 (fluid). → → • Laminar steady flow : v = v ( x , y ) e z . • v i = v | Ω i , here : v 1 = 0 (solid), v 2 , v 3 � = 0 (fluid). • Heterogeneous conductivities k : k i = k | Ω i , k i � = k j . • Γ i , j interface between Ω i and Ω j , n i , j normal to Γ i , j .

  3. Introduction Analyse Numerical analysis 1- The problem : physical configuration Ω Ω × R n Ω 1 v 2 > 0 Ω 2 n 3 , 1 v 1 = 0 n 2 , 1 Ω 3 v 3 > 0 y + ∞ x −∞ z This settlement both include : • co-current flows, •

  4. Introduction Analyse Numerical analysis 1- The problem : physical configuration Ω Ω × R n Ω 1 v 2 < 0 Ω 2 n 3 , 1 v 1 = 0 n 2 , 1 Ω 3 v 3 > 0 y + ∞ x −∞ z This settlement both include : • co-current flows, • counter-current flows.

  5. Introduction Analyse Numerical analysis 1- The problem : physical configuration Ω Ω × R n Ω 1 v 2 < 0 Ω 2 n 3 , 1 v 1 = 0 n 2 , 1 Ω 3 v 3 > 0 y + ∞ x −∞ z This settlement both include : • co-current flows, • counter-current flows. It has extension to : • planar configurations (unbounded in x ), • periodic configurations.

  6. Introduction Analyse Numerical analysis 2- The problem : mathematical formulation Ω Ω × R n Ω 1 v 2 < 0 Ω 2 n 3 , 1 v 1 = 0 n 2 , 1 Ω 3 v 3 > 0 y + ∞ x −∞ z Energy equation on the temperature T : v = v ( x , y ), k = k ( x , y ), div( k ∇ T ) + k ∂ 2 z T = v ∂ z T , + Continuity coupling conditions between the sub-domains : T i = T j , k i ∇ T i · n i , j = k j ∇ T j · n i , j on Γ i , j ,

  7. Introduction Analyse Numerical analysis 2- The problem : mathematical formulation Ω Ω × R n Ω 1 v 2 < 0 Ω 2 n 3 , 1 v 1 = 0 n 2 , 1 Ω 3 v 3 > 0 y + ∞ x −∞ z Energy equation on the temperature T : v = v ( x , y ), k = k ( x , y ), div( k ∇ T ) + k ∂ 2 z T = v ∂ z T , + Boundary conditions on ∂ Ω : Dirichlet with jump at z = 0, + Limit conditions at ±∞ : � T = 1 , z < 0 � T → 1 , z → −∞ on ∂ Ω : . and T = 0 , z > 0 T → 0 , z → + ∞

  8. Introduction Analyse Numerical analysis 3- Objectives Ω Ω × R n Ω 1 v 2 < 0 Ω 2 n 3 , 1 v 1 = 0 n 2 , 1 Ω 3 v 3 > 0 y + ∞ x −∞ z 1. Macroscopic description of an average temperature T ⋆ ( z ) : T ⋆ ( z ) ≃ C 1 e λ 1 z + C 2 e λ 2 z + . . . 2. Exchanges between sub-domains description : � k i ∇ T i · n i , j ds . Γ i , j

  9. Introduction Analyse Numerical analysis 4- Pending questions Ω Ω × R n Ω 1 v 2 < 0 Ω 2 n 3 , 1 v 1 = 0 n 2 , 1 Ω 3 v 3 > 0 y + ∞ x −∞ z � c λ t λ ( x , y ) e λ z 1. Does T read : T ( x , y , z ) = ? λ ∈ Λ 2. Location of the “ spectrum ” Λ, get a computation method for the eigenvalues/eigenfunctions λ , t λ ( x , y ). 3. Computation of the constants c λ : searching an orthogonality property for the t λ .

  10. Introduction Analyse Numerical analysis Introductory exemple : the Graetz problem r r = 1 . . . Semi-infinite tube (radius 1) 1 fluid phase v ( r ) 0 z 0 Axi-symmetry . . . High P´ eclet : Pe ≫ 1 T 0 ( r ) ∂ 2 Taylor approximation → axial diffusion z T neglected “ Directional ” problem → entry condition T 0 ( r ) given 1 r ∂ r ( r ∂ r T ) = v ( r ) ∂ z T , T ( r , 0) = T 0 ( r ) , T (1 , z ) = 0 . T = t ( r ) e λ z Separate variable → Eigenvalue problem → λ , t ( r ) read : 1 r ∂ r ( r ∂ r t ) = λ Pe v ( r ) t , t (1) = 0 .

  11. Introduction Analyse Numerical analysis Introductory exemple : the Graetz problem r r = 1 . . . Semi-infinite tube (radius 1) 1 fluid phase v ( r ) 0 z 0 Axi-symmetry . . . High P´ eclet : Pe ≫ 1 T 0 ( r ) Self-adjoint, negative and compact problem : ⇒ Complete orthogonal system of eigenfunctions ( t i ( r )) i , with eigenvalues 0 > λ 1 ≥ λ 2 ≥ · · · → −∞ . ⇒ Analytical solution : � 1 c i t i ( r ) e λ i z , � T ( r , z ) = c i = t i T 0 r dr . 0 i ∈ N

  12. Introduction Analyse Numerical analysis Generalisation 1 : extended Graetz Axial diffusion ∂ 2 z T is no longer neglected. 1. Separate variable → T = t ( r ) e λ z → do not provide an eigenvalue problem 1 λ v ( r ) − λ 2 � � r ∂ r ( r ∂ r t ) = t . 2. No symmetry property available : → problem for the spectrum location : Λ ∈ R ? → computational problem for the c λ . 3. The problem is not directional any more : entry condition T 0 ( r ) not relevant. → switch to limit conditions in ±∞ .

  13. Introduction Analyse Numerical analysis Generalisation 2 : conjugated Graetz R R r 1 v ( r ) z Coupling with a solid wall where diffusion occurs. 1 < r < R : 1 r ∂ r ( r ∂ r T ) + ∂ 2 z T = 0 r = 1 : T (1 + , z ) = T (1 − , z ) , ∂ r T (1 + , z ) = k ∂ r T (1 + , z ) . ⇒ Same difficulties as before : 1. no real eigenvalue problem, 2. no symmetry property , 3. problem not directional .

  14. Introduction Analyse Numerical analysis Mixed reformulation : statement One reformulate the initial problem div( k ∇ T ) + k ∂ 2 z T = v ∂ z T , adding a vectorial unknown X = X ( x , y , z ) : k ∂ z T = v T − div( X ) ∂ z X = k ∇ T → Introducing the operator A : � v k − 1 − k − 1 div � � � T T � � ∂ z = A , A = � � k ∇ X X � �

  15. Introduction Analyse Numerical analysis Mixed reformulation : analysis Theorem 1. The unbounded operator A : D ( A ) ⊂ H �→ H , H = L 2 (Ω) × L 2 (Ω) 2 , D ( A ) = H 1 0 (Ω) × H ( div , Ω) : 1. is self adjoint, 2. is diagonal on an eigenfunctions orthogonal system, 3. λ 0 = 0 excepted, all eigenvalues have finite order. Its spectrum Λ reads Λ = { λ 0 } ∪ Λ + ∪ Λ − : • Λ + = downstream modes : 0 > λ + 1 ≥ λ + 2 ≥ · · · → −∞ → related to the z > 0 region. • Λ − = upstream modes : 0 < λ + 1 ≤ λ + 2 ≤ · · · → + ∞ → related to the z < 0 region.

  16. Introduction Analyse Numerical analysis Mixed reformulation : solution definition Analytical solution : defined from • Downstream eigenvalues / eigenfunctions : λ + n , t + n ( x , y ) eigenvalues / eigenfunctions : λ − n , t − • Upstream n ( x , y ) • The coefficients α n α n := 1 � k ∇ t n · n ds , λ 2 ∂ Ω n Corollary . The sought temperature field reads : � α − n t − n ( x , y ) e λ −  n z 1 + z ≤ 0   n T ( x , y , z ) = n ( x , y ) e λ + � α + n t + n z − z ≥ 0   n

  17. Introduction Analyse Numerical analysis Some numerical analysis The following eigen-pronlem has to be solved : � � � T T T � � � find λ ∈ R , ∈ D ( A ) : A = λ . (1) � � � X X X � � � Theorem 2. Eigen-problem (1) is equivalent to the following variational problem : find λ ∈ R and ( T , X ) ∈ L 2 (Ω) × H (div , Ω), such that ∀ ( u , Y ) ∈ L 2 (Ω) × H (div , Ω) : � � � T u v dx − u div( X ) dx = λ T u k dx Ω Ω Ω � � X · Y k − 1 dx . − T div( Y ) dx = λ Ω Ω

  18. Introduction Analyse Numerical analysis Axi-symmetric convergence analysis Discretisation using mixed finite element spaces : e. g. T h ∈ P 0 , X h ∈ RT 0 . Evaluation of the method on the conjugated Graetz problem : → Reduction to a 1D numerical problem (axi-symmetry). → Comparison with analytical reference solutions. Relative error on the first eigenfunctions : T + 1 , T + 2 and T − 1 , with respect to the nodes number. Dashed line : slope = -1 Pe = 0 . 1 Pe = 10 Convergence rate on the eigenvalues → same order 1.

  19. Introduction Analyse Numerical analysis Conclusion • Nice mathematical framework : orthogonality properties, problem analysis on a compete orthogonal base. • Natural mixed numerical formulation. • From 3D to 2D problem reduction, Only smallest modulus eigenvalues to be computed (principal modes), Numerical validation on a test case.

  20. Introduction Analyse Numerical analysis Conclusion and perspectives • Nice mathematical framework : orthogonality properties, problem analysis on a compete orthogonal base. • Natural mixed numerical formulation. • From 3D to 2D problem reduction, Only smallest modulus eigenvalues to be computed (principal modes), Numerical validation on a test case. • General 2D implementation, • heat exchanger shape optimisation.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend