bound states in pt symmetric layers
play

Bound states in PT -symmetric layers Radek Nov ak Department of - PowerPoint PPT Presentation

Bound states in PT -symmetric layers Radek Nov ak Department of Physics Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Department of Theoretical Physics Nuclear Physics Institute Academy of


  1. Bound states in PT -symmetric layers Radek Nov´ ak Department of Physics Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Department of Theoretical Physics Nuclear Physics Institute Academy of Sciences of the Czech Republic http://gemma.ujf.cas.cz/ ∼ r.novak 3rd Najman conference September 18, 2013 Joint work with David Krejˇ ciˇ r´ ık

  2. Outline of the talk ◮ Introduction ◮ PT -symmetric Quantum mechanics ◮ Quantum waveguides ◮ PT -symmetric waveguides ◮ Model ◮ Symmetries ◮ Uniform waveguide ◮ Perturbed waveguide ◮ Essential spectrum ◮ Weakly-coupled bound states ◮ Conclusions

  3. PT -symmetric Quantum mechanics ? Non-Hermitian observables in Quantum mechanics ?

  4. PT -symmetric Quantum mechanics ? Non-Hermitian observables in Quantum mechanics ? ◮ Hamiltonian − ∆ + i x 3 in L 2 ( R ) possess real spectrum [Bender, Boettcher 98] ◮ more generally: − ∆ + x 2 (i x ) ε in L 2 ( R ) for ε > 0

  5. PT -symmetric Quantum mechanics ? Non-Hermitian observables in Quantum mechanics ? ◮ Hamiltonian − ∆ + i x 3 in L 2 ( R ) possess real spectrum [Bender, Boettcher 98] ◮ more generally: − ∆ + x 2 (i x ) ε in L 2 ( R ) for ε > 0 ? Due to PT -symmetry ? [ H , PT ] = 0 (in operator sense) ◮ Parity ( P ψ ) ( x ) = ψ ( − x ) ◮ Time reversal ( T ψ ) ( x ) = ψ ( x )

  6. PT -symmetric Quantum mechanics ? Non-Hermitian observables in Quantum mechanics ? ◮ Hamiltonian − ∆ + i x 3 in L 2 ( R ) possess real spectrum [Bender, Boettcher 98] ◮ more generally: − ∆ + x 2 (i x ) ε in L 2 ( R ) for ε > 0 ? Due to PT -symmetry ? [ H , PT ] = 0 (in operator sense) ◮ Parity ( P ψ ) ( x ) = ψ ( − x ) ◮ Time reversal ( T ψ ) ( x ) = ψ ( x ) ! Lack of techniques - no spectral theorem, no Min-max principle, . . . !

  7. Physical relevance ◮ Suggestions ◮ nuclear physics [Scholtz, Geyer, Hahne 92] , optics [Klaiman, G¨ unther, Moiseyev 08], [Schomerus 10] , solid state physics [Bendix, Fleischmann, Kottos, Shapiro 09] , superconductivity [Rubinstein, Sternberg, Ma 07] , electromagnetism [Ruschhaupt, Delgado, Muga 05], [Mostafazadeh 09] , scattering [Hernandez-Coronado, Krejˇ ciˇ r´ ık, Siegl 11] ◮ Experiments ◮ optics [Guo et al. 09] , [R¨ uter et al. 10]

  8. Physical relevance ◮ Suggestions ◮ nuclear physics [Scholtz, Geyer, Hahne 92] , optics [Klaiman, G¨ unther, Moiseyev 08], [Schomerus 10] , solid state physics [Bendix, Fleischmann, Kottos, Shapiro 09] , superconductivity [Rubinstein, Sternberg, Ma 07] , electromagnetism [Ruschhaupt, Delgado, Muga 05], [Mostafazadeh 09] , scattering [Hernandez-Coronado, Krejˇ ciˇ r´ ık, Siegl 11] ◮ Experiments ◮ optics [Guo et al. 09] , [R¨ uter et al. 10] ? How to make sense of PT -symmetric operators ?

  9. Physical relevance ◮ Suggestions ◮ nuclear physics [Scholtz, Geyer, Hahne 92] , optics [Klaiman, G¨ unther, Moiseyev 08], [Schomerus 10] , solid state physics [Bendix, Fleischmann, Kottos, Shapiro 09] , superconductivity [Rubinstein, Sternberg, Ma 07] , electromagnetism [Ruschhaupt, Delgado, Muga 05], [Mostafazadeh 09] , scattering [Hernandez-Coronado, Krejˇ ciˇ r´ ık, Siegl 11] ◮ Experiments ◮ optics [Guo et al. 09] , [R¨ uter et al. 10] ? How to make sense of PT -symmetric operators ? When metric operator Θ > 0 , � Θ � < + ∞ , � Θ − 1 � < + ∞ exists: (H is then called quasi-Hermitian) ◮ H is Hermitian in Hilbert space � L 2 , �· , Θ ·� � ◮ h = Θ 1 / 2 H Θ − 1 / 2 is Hermitian in � L 2 , �· , ·� �

  10. Physical relevance ◮ Suggestions ◮ nuclear physics [Scholtz, Geyer, Hahne 92] , optics [Klaiman, G¨ unther, Moiseyev 08], [Schomerus 10] , solid state physics [Bendix, Fleischmann, Kottos, Shapiro 09] , superconductivity [Rubinstein, Sternberg, Ma 07] , electromagnetism [Ruschhaupt, Delgado, Muga 05], [Mostafazadeh 09] , scattering [Hernandez-Coronado, Krejˇ ciˇ r´ ık, Siegl 11] ◮ Experiments ◮ optics [Guo et al. 09] , [R¨ uter et al. 10] ? How to make sense of PT -symmetric operators ? When metric operator Θ > 0 , � Θ � < + ∞ , � Θ − 1 � < + ∞ exists: (H is then called quasi-Hermitian) ◮ H is Hermitian in Hilbert space � L 2 , �· , Θ ·� � ◮ h = Θ 1 / 2 H Θ − 1 / 2 is Hermitian in � L 2 , �· , ·� � ⇒ solves problem with reality of the spectrum, probability conservation, Stone’s theorem. . .

  11. Quantum waveguides = microscopic structures of semiconductor material ◮ e.g. thin films, quantum wires, . . . [Exner, ˇ Seba 88], [Duclos, Exner 95]

  12. Quantum waveguides = microscopic structures of semiconductor material ◮ e.g. thin films, quantum wires, . . . [Exner, ˇ Seba 88], [Duclos, Exner 95] Mathematical description: ◮ unbounded tubular region ◮ free Laplacian ◮ boundary conditions

  13. Quantum waveguides = microscopic structures of semiconductor material ◮ e.g. thin films, quantum wires, . . . [Exner, ˇ Seba 88], [Duclos, Exner 95] Mathematical description: ◮ unbounded tubular region ◮ free Laplacian ◮ boundary conditions Straight waveguides have empty discrete spectrum ⇒ study of various perturbations ◮ small bumps [Bulla, Gesztezy, Renger, Simon 97] ◮ mixing of boundary conditions [Dittrich, Kˇ r´ ıˇ z 02] ◮ twisting and bending [Krejˇ ciˇ r´ ık 08]

  14. The model ◮ straight waveguide ◮ 1 finite dimension (variable u ) ◮ n infinite dimensions (variable x ) u d x

  15. The model ◮ straight waveguide ◮ 1 finite dimension (variable u ) ◮ n infinite dimensions (variable x ) ◮ complex boundary conditions ◮ imperfect containment of the electron d

  16. The model ◮ straight waveguide ◮ 1 finite dimension (variable u ) ◮ n infinite dimensions (variable x ) ◮ complex boundary conditions ◮ imperfect containment of the electron ◮ uniform boundary conditions ◮ exactly solvable d

  17. The model ◮ straight waveguide ◮ 1 finite dimension (variable u ) ◮ n infinite dimensions (variable x ) ◮ complex boundary conditions ◮ imperfect containment of the electron ◮ uniform boundary conditions ◮ exactly solvable ◮ influence of small perturbation in boundary conditions ◮ existence of bound states? d

  18. Previous results [Borisov, Krejˇ ciˇ r´ ık 08] Setup: ◮ planar waveguide Ω = R × I ◮ Robin-type boundary conditions ∂ u Ψ + i( α 0 + εβ )Ψ = 0 ◮ compactly supported perturbation β ∂ u Ψ + i α Ψ = 0 u d x 1 ∂ u Ψ + i α Ψ = 0

  19. Previous results [Borisov, Krejˇ ciˇ r´ ık 08] Setup: ◮ planar waveguide Ω = R × I ◮ Robin-type boundary conditions ∂ u Ψ + i( α 0 + εβ )Ψ = 0 ◮ compactly supported perturbation β Results: ◮ conditions on existence and uniqueness of the bound state ◮ eigenvalue expansion up to order of ε 4 ◮ wavefunction asymptotics ∂ u Ψ + i α Ψ = 0 u d x 1 ∂ u Ψ + i α Ψ = 0

  20. Definition of the Hamiltonian The waveguide Ω := R n × (0 , d ) = R n × I H α Ψ := − ∆Ψ , � ∂ u Ψ + i α Ψ = 0 Ψ ∈ W 2 , 2 (Ω) � � � Dom( H α ) := on ∂ Ω u x 1 x 2 ∂ u Ψ + i α Ψ = 0 d ∂ u Ψ + i α Ψ = 0

  21. Definition of the Hamiltonian The waveguide Ω := R n × (0 , d ) = R n × I H α Ψ := − ∆Ψ , Ψ ∈ W 2 , 2 (Ω) � ∂ u Ψ + i α Ψ = 0 � � � Dom( H α ) := on ∂ Ω Theorem Let α ∈ W 1 , ∞ ( R n ) be real-valued. Then H α is an m-sectorial operator on L 2 (Ω). Im η θ γ Re η

  22. Definition of the Hamiltonian The waveguide Ω := R n × (0 , d ) = R n × I H α Ψ := − ∆Ψ , � ∂ u Ψ + i α Ψ = 0 � Ψ ∈ W 2 , 2 (Ω) � � Dom( H α ) := on ∂ Ω Theorem Let α ∈ W 1 , ∞ ( R n ) be real-valued. Then H α is an m-sectorial operator on L 2 (Ω). Idea of the proof: � |∇ Ψ( x , u ) | 2 d x d u h α [Ψ] := Ω � � R n α ( x ) | Ψ( x , d ) | 2 d x − i R n α ( x ) | Ψ( x , 0) | 2 d x + i ◮ h α is sectorial and closed ◮ First representation theorem

  23. Definition of the Hamiltonian The waveguide Ω := R n × (0 , d ) = R n × I H α Ψ := − ∆Ψ , � ∂ u Ψ + i α Ψ = 0 � Ψ ∈ W 2 , 2 (Ω) � � Dom( H α ) := on ∂ Ω Theorem Let α ∈ W 1 , ∞ ( R n ) be real-valued. Then H α is an m-sectorial operator on L 2 (Ω). Idea of the proof: � |∇ Ψ( x , u ) | 2 d x d u h α [Ψ] := Ω � � R n α ( x ) | Ψ( x , d ) | 2 d x − i R n α ( x ) | Ψ( x , 0) | 2 d x + i ◮ h α is sectorial and closed ◮ First representation theorem Note that H ∗ α = H − α

  24. Symmetries of H α The spatial reflection operator P and the time reversal operator T : ( P Ψ)( x , u ) := Ψ( x , d − u ) , ( T Ψ)( x , u ) := Ψ( x , u ) .

  25. Symmetries of H α The spatial reflection operator P and the time reversal operator T : ( P Ψ)( x , u ) := Ψ( x , d − u ) , ( T Ψ)( x , u ) := Ψ( x , u ) . Proposition Let α ∈ W 1 , ∞ ( R n ) be real-valued. Then H α is PT -symmetric, i.e. [ H α , PT ] = 0. ⇒ λ ∈ σ ( H ) ⇔ λ ∈ σ ( H )

  26. Symmetries of H α The spatial reflection operator P and the time reversal operator T : ( P Ψ)( x , u ) := Ψ( x , d − u ) , ( T Ψ)( x , u ) := Ψ( x , u ) . Proposition Let α ∈ W 1 , ∞ ( R n ) be real-valued. Then H α is PT -symmetric, i.e. [ H α , PT ] = 0. ⇒ λ ∈ σ ( H ) ⇔ λ ∈ σ ( H ) Proposition Let α ∈ W 1 , ∞ ( R n ) be real-valued. Then H α is T -self-adjoint, i.e T H α T = H ∗ α ⇒ σ r ( H α ) = ∅

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend