firefighting on trees beyond integrality gaps
play

Firefighting on Trees Beyond Integrality Gaps David Adjiashvili, - PowerPoint PPT Presentation

. Department of Mathematics ETH Zrich Aussois 2016 Firefighting on Trees Beyond Integrality Gaps David Adjiashvili, Andrea Baggio , Rico Zenklusen . Introduction 3 . . . . . . . . . . . . . . . . . . . . . r . . r .


  1. 4 r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t 4 . t 5 . t 6 . t 1 t t 2 . t 3 . t 4 . t 5 1 . 3 . . . . . . . . . . . . . . . . 2 . . . . . . . . t 0 . . t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FireFighter Problem - FFP . . at t = 2 t = 1

  2. 4 r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t 4 . t 5 . t 6 . t 1 t t 2 . t 3 . t 4 . t 5 1 . 3 . . . . . . . . . . . . . . . . . . . . . . . . . t 0 . t 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FireFighter Problem - FFP . . at t = 2 t = 2

  3. 4 r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t 4 . t 5 . t 6 . t 1 t t 2 . t 3 . t 4 . t 5 1 . 3 . . . . . . . . . . . . . . . . . . . . . . . . . t 0 . t 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FireFighter Problem - FFP . . at t = 3 t = 2

  4. 4 r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t 4 . t 5 . t 6 . t 1 t 2 2 . t 3 . t 4 . t 5 1 . . t . . . . . . . . . . . . . . . . . . . . . . . . t 0 . t 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FireFighter Problem - FFP . . at t = 3 t = 3

  5. 4 r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t 3 . . t 5 . t 6 . t 1 t 2 2 . t 3 . t 4 . t 5 1 . . t . . . . . . . . . . . . . . . . . . . . . . . . t 0 . t 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FireFighter Problem - FFP . . at t = 4 t = 4

  6. 4 r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t 3 . t 4 . . t 6 . t 1 t 2 2 . t 3 . t 4 . t 5 1 . . t . . . . . . . . . . . . . . . . . . . . . . . . t 0 . t 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FireFighter Problem - FFP . . at t = 5 t = 5

  7. 4 r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t 3 . t 4 . t 5 . . t 1 t 2 2 . t 3 . t 4 . t 5 1 . . t . . . . . . . . . . . . . . . . . . . . . . . . t 0 . t 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FireFighter Problem - FFP . . at t = 6 t = 6

  8. 4 . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t 0 . t 1 . t 2 . t 3 t . 4 . t 5 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FireFighter Problem - FFP . . × time t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

  9. 4 . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 . t 2 . t 3 . t 4 . t . . . . . . . 1 . . . . Allocate one . t 0 . . . . . . . . . . . . . . . t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FireFighter Problem - FFP . . × time t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 GOAL . . × time as to maximize saved nodes.

  10. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resource Minimization for Fire Containment - RMFC t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

  11. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resource Minimization for Fire Containment - RMFC t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

  12. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . save all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resource Minimization for Fire Containment - RMFC . ! t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

  13. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Using only one . save all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resource Minimization for Fire Containment - RMFC . ! t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 . . × time, impossible!

  14. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . With two . save all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resource Minimization for Fire Containment - RMFC . ! t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 . . × time, saving all . is possible!

  15. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimize number of . . . save all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resource Minimization for Fire Containment - RMFC . ! t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 GOAL . . × time as to save all . .

  16. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimize number of . . . save all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resource Minimization for Fire Containment - RMFC . ! t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 GOAL . . × time as to save all . .

  17. Hardness - Finbow, King, MacGillivray, and Rizzi (2007) Approximation - Hartnell and Li (2000) Simple greedy algorithm achieves a 1 / 2 -approximation. Approximation - Cai, Verbin, and Yang (2008) . 1 e -approximation (LP based!). Approx. - Anshelevich, Chakrabarty, Hate, and Swamy (2012) e -approx. via monotone submodular function 6 maximization subject to a partition matroid constraint. 1 / 1 . . . . 1 / . . . . . The problem is NP-hard. . . Previous Results - FireFighter Problem On Trees

  18. Approximation - Hartnell and Li (2000) Simple greedy algorithm achieves a 1 / 2 -approximation. Approximation - Cai, Verbin, and Yang (2008) . 1 e -approximation (LP based!). Approx. - Anshelevich, Chakrabarty, Hate, and Swamy (2012) e -approx. via monotone submodular function 6 maximization subject to a partition matroid constraint. 1 / 1 . . . . 1 / . . . . . The problem is NP-hard. . . Previous Results - FireFighter Problem On Trees Hardness - Finbow, King, MacGillivray, and Rizzi (2007)

  19. Approximation - Cai, Verbin, and Yang (2008) . 1 e -approximation (LP based!). Approx. - Anshelevich, Chakrabarty, Hate, and Swamy (2012) e -approx. via monotone submodular function 6 maximization subject to a partition matroid constraint. 1 / 1 . . . 1 / . . . . . . The problem is NP-hard. . . Previous Results - FireFighter Problem On Trees Hardness - Finbow, King, MacGillivray, and Rizzi (2007) Approximation - Hartnell and Li (2000) Simple greedy algorithm achieves a 1 / 2 -approximation.

  20. Approx. - Anshelevich, Chakrabarty, Hate, and Swamy (2012) e -approx. via monotone submodular function 6 . maximization subject to a partition matroid constraint. 1 / 1 . . . -approximation (LP based!). e . . . . . . The problem is NP-hard. . . Previous Results - FireFighter Problem On Trees Hardness - Finbow, King, MacGillivray, and Rizzi (2007) Approximation - Hartnell and Li (2000) Simple greedy algorithm achieves a 1 / 2 -approximation. Approximation - Cai, Verbin, and Yang (2008) ( ) 1 − 1 /

  21. 6 e e . . . . . . . -approximation (LP based!). . -approx. via monotone submodular function . The problem is NP-hard. . . maximization subject to a partition matroid constraint. . Previous Results - FireFighter Problem On Trees Hardness - Finbow, King, MacGillivray, and Rizzi (2007) Approximation - Hartnell and Li (2000) Simple greedy algorithm achieves a 1 / 2 -approximation. Approximation - Cai, Verbin, and Yang (2008) ( ) 1 − 1 / Approx. - Anshelevich, Chakrabarty, Hate, and Swamy (2012) ( ) 1 − 1 /

  22. Hardness - Finbow, King, MacGillivray, and Rizzi (2007) Approximation - Chalermsook and Chuzhoy (2010) . . . NP-hard to approximate within any factor better than 2. O log n -approx. via constant factor approximation for FFP. . . . O log n -approximation (LP based!). 7 Previous Results - RMFC On Trees

  23. Approximation - Chalermsook and Chuzhoy (2010) . . . NP-hard to approximate within any factor better than 2. O log n -approx. via constant factor approximation for FFP. . . . O log n -approximation (LP based!). 7 Previous Results - RMFC On Trees Hardness - Finbow, King, MacGillivray, and Rizzi (2007)

  24. Approximation - Chalermsook and Chuzhoy (2010) . . . NP-hard to approximate within any factor better than 2. . . . O log n -approximation (LP based!). 7 Previous Results - RMFC On Trees Hardness - Finbow, King, MacGillivray, and Rizzi (2007) O ( log n ) -approx. via constant factor approximation for FFP.

  25. . . . NP-hard to approximate within any factor better than 2. . . . 7 Previous Results - RMFC On Trees Hardness - Finbow, King, MacGillivray, and Rizzi (2007) O ( log n ) -approx. via constant factor approximation for FFP. Approximation - Chalermsook and Chuzhoy (2010) O ( log ∗ n ) -approximation (LP based!).

  26. Do Integrality Gaps Reflect Approximation Hardness? e matches integr. gap. partition matroid constraint (no o log n -approx!). k -center problem Similar to the Asymmetric RMFC -approx! ) . e 1 / ( no 1 Seen as monotone submodu- lar function max. subject to a Current best algorithms for FFP and RMFC are LP based. FFP Answer not clear before! up to constant-factor. O log n matches integr. gap RMFC 1 / 1 FFP 8

  27. Do Integrality Gaps Reflect Approximation Hardness? Seen as monotone submodu- (no o log n -approx!). k -center problem Similar to the Asymmetric RMFC -approx! ) . e 1 / ( no 1 partition matroid constraint lar function max. subject to a FFP Current best algorithms for FFP and RMFC are LP based. Answer not clear before! up to constant-factor. RMFC matches integr. gap. e FFP 8 O ( log ∗ n ) matches integr. gap ( ) 1 − 1 /

  28. 8 Seen as monotone submodu- (no o log n -approx!). k -center problem Similar to the Asymmetric RMFC -approx! ) . e 1 / ( no 1 partition matroid constraint lar function max. subject to a FFP Current best algorithms for FFP and RMFC are LP based. Answer not clear before! up to constant-factor. RMFC matches integr. gap. e FFP Do Integrality Gaps Reflect Approximation Hardness? O ( log ∗ n ) matches integr. gap ( ) 1 − 1 /

  29. 8 Seen as monotone submodu- (no o log n -approx!). k -center problem Similar to the Asymmetric RMFC -approx! ) . e 1 / ( no 1 partition matroid constraint lar function max. subject to a FFP Current best algorithms for FFP and RMFC are LP based. Answer not clear before! up to constant-factor. RMFC matches integr. gap. e FFP Do Integrality Gaps Reflect Approximation Hardness? O ( log ∗ n ) matches integr. gap ( ) 1 − 1 /

  30. 8 FFP (no o log n -approx!). k -center problem Similar to the Asymmetric RMFC -approx! ) . ( no partition matroid constraint lar function max. subject to a Current best algorithms for FFP and RMFC are LP based. Seen as monotone submodu- Answer not clear before! up to constant-factor. RMFC matches integr. gap. e FFP Do Integrality Gaps Reflect Approximation Hardness? O ( log ∗ n ) matches integr. gap ( ) 1 − 1 / ( ) 1 − 1 / e + ϵ

  31. 8 FFP k -center problem Similar to the Asymmetric RMFC -approx! ) . ( no partition matroid constraint lar function max. subject to a Current best algorithms for FFP and RMFC are LP based. Seen as monotone submodu- Answer not clear before! up to constant-factor. RMFC matches integr. gap. e FFP Do Integrality Gaps Reflect Approximation Hardness? O ( log ∗ n ) matches integr. gap ( ) 1 − 1 / (no o ( log ∗ n ) -approx!). ( ) 1 − 1 / e + ϵ

  32. Theorem - Adjiashvili, Baggio, and Zenklusen (2015) Theorem - Adjiashvili, Baggio, and Zenklusen (2015) . . . PTAS for the FireFighter Problem on trees. . . . O 1 -approximation for RMFC on trees. Both algorithms are guided by the same known LPs! We introduce techniques to go beyond integrality gaps. 9 Our Contributions

  33. Theorem - Adjiashvili, Baggio, and Zenklusen (2015) . . . PTAS for the FireFighter Problem on trees. . . . O 1 -approximation for RMFC on trees. Both algorithms are guided by the same known LPs! We introduce techniques to go beyond integrality gaps. 9 Our Contributions Theorem - Adjiashvili, Baggio, and Zenklusen (2015)

  34. . . . PTAS for the FireFighter Problem on trees. . . . Both algorithms are guided by the same known LPs! We introduce techniques to go beyond integrality gaps. 9 Our Contributions Theorem - Adjiashvili, Baggio, and Zenklusen (2015) Theorem - Adjiashvili, Baggio, and Zenklusen (2015) O ( 1 ) -approximation for RMFC on trees.

  35. . . . PTAS for the FireFighter Problem on trees. . . . We introduce techniques to go beyond integrality gaps. 9 Our Contributions Theorem - Adjiashvili, Baggio, and Zenklusen (2015) Theorem - Adjiashvili, Baggio, and Zenklusen (2015) O ( 1 ) -approximation for RMFC on trees. Both algorithms are guided by the same known LPs!

  36. . . . PTAS for the FireFighter Problem on trees. . . . We introduce techniques to go beyond integrality gaps. 9 Our Contributions Theorem - Adjiashvili, Baggio, and Zenklusen (2015) Theorem - Adjiashvili, Baggio, and Zenklusen (2015) O ( 1 ) -approximation for RMFC on trees. Both algorithms are guided by the same known LPs!

  37. . PTAS For The FireFighter Problem

  38. u V c u x u w P w V t x w 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v x w t c u subtree of u P v path r v LP max s t 1 V t v leaves t t 1 L x u 0 1 u V layers ow. . . . . . . . . . . r . . . 0 . . V nodes r x u 1 if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Linear Program t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

  39. u V c u x u w P w V t x w 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v x w t c u subtree of u P v path r v LP max s t 1 V t v leaves t t 1 L x u 0 1 u V layers ow. . . . . . . . . . . r . . . 0 . . V nodes r x u 1 if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Linear Program t = 1 t = 2 t = 3 t = 4 t = 5 t = L

  40. u V c u x u w P w V t x w 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v x w t c u subtree of u P v path r v LP max s t 1 V t v leaves t t 1 L x u 0 1 u V layers ow. . r . . . . . . . . . . . 0 . . . . . x u 1 if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Linear Program V = nodes \ { r } t = 1 t = 2 t = 3 t = 4 t = 5 t = L

  41. u V c u x u w P w V t x w 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v x w t c u subtree of u P v path r v LP max s t 1 V t v leaves t t 1 L x u 0 1 u V layers ow. . . . . . . . . . . . r . 0 . . . . . u 1 if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Linear Program V = nodes \ { r } { t = 1 x u = t = 2 t = 3 t = 4 t = 5 t = L

  42. u V c u x u w P w V t x w 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 0 ow. V t layers t c u subtree of u P v path r LP . max v x w 1 v leaves t t 1 L . . if . . . . . . . . . . . . 1 . . r . . . . . . . u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Linear Program V = nodes \ { r } { t = 1 x u = t = 2 t = 3 t = 4 t = 5 t = L s . t . x u ∈ { 0 , 1 } ∀ u ∈ V

  43. u V c u x u w P 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c u . . u 1 if . . . 0 ow. subtree of u . P v path r v LP max v x w 1 v leaves u . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Linear Program V = nodes \ { r } { t = 1 x u = t = 2 V t = layers ≤ t t = 3 t = 4 t = 5 t = L s . t . ∑ V t x w ≤ t ∀ t = 1 , . . . , L w ∈ x u ∈ { 0 , 1 } ∀ u ∈ V

  44. w P 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u . . u . u 1 if . 0 . ow. P v path r v LP v x w 1 v leaves . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Linear Program V = nodes \ { r } { t = 1 x u = t = 2 V t = layers ≤ t t = 3 t = 4 c u = | subtree of u | t = 5 t = L max ∑ u ∈ V c u x u s . t . ∑ V t x w ≤ t ∀ t = 1 , . . . , L w ∈ x u ∈ { 0 , 1 } ∀ u ∈ V

  45. 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u . . u u . . v 1 if . . . 0 ow. LP . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Linear Program V = nodes \ { r } { t = 1 x u = t = 2 V t = layers ≤ t t = 3 t = 4 c u = | subtree of u | t = 5 P v = path r → v t = L max ∑ u ∈ V c u x u s . t . ∑ v x w ≤ 1 ∀ v ∈ leaves w ∈ P ∑ V t x w ≤ t ∀ t = 1 , . . . , L w ∈ x u ∈ { 0 , 1 } ∀ u ∈ V

  46. 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . 1 if . . . 0 ow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Linear Program V = nodes \ { r } { t = 1 x u = t = 2 V t = layers ≤ t t = 3 t = 4 c u = | subtree of u | t = 5 P v = path r → v t = L max ∑ u ∈ V c u x u s . t . ∑ v x w ≤ 1 ∀ v ∈ leaves w ∈ P ( LP ) ∑ V t x w ≤ t ∀ t = 1 , . . . , L w ∈ x u ∈ [ 0 , 1 ] ∀ u ∈ V

  47. 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 if . . . 0 ow. . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Linear Program V = nodes \ { r } { t = 1 x u = t = 2 V t = layers ≤ t t = 3 t = 4 c u = | subtree of u | t = 5 P v = path r → v t = L max ∑ u ∈ V c u x u s . t . ∑ v x w ≤ 1 ∀ v ∈ leaves w ∈ P ( LP ) ∑ V t x w ≤ t ∀ t = 1 , . . . , L w ∈ x u ∈ [ 0 , 1 ] ∀ u ∈ V

  48. 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 if . . . 0 ow. . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Linear Program V = nodes \ { r } { t = 1 x u = t = 2 V t = layers ≤ t t = 3 t = 4 c u = | subtree of u | t = 5 P v = path r → v t = L max ∑ u ∈ V c u x u s . t . ∑ v x w ≤ 1 ∀ v ∈ leaves w ∈ P ( LP ) ∑ V t x w ≤ t ∀ t = 1 , . . . , L w ∈ x u ∈ [ 0 , 1 ] ∀ u ∈ V

  49. u x w u x w . and discard fractions PLAN: reallocate . : . . A node u is loose w.r.t. x if . . Let x be a vertex sol. of LP . r . . . . . . . . 0 . . . . . . . • x u 12 • . 2. return integral part . . push fraction down to some do nothing . 1. for each . . . w P 1 w P • 0 • x u A node u is tight w.r.t. x if . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loose and Tight Nodes

  50. u x w u x w . and discard fractions PLAN: reallocate . : 0 . 0 . 12 . . . 0 . 0 . 0 . . . . . . r . . . . . . . . 0 A node u is loose w.r.t. x if 0 w P 2. return integral part . . push fraction down to some do nothing . 1. for each . . . . 1 • . 0 • x u A node u is tight w.r.t. x if . . 1 w P • 0 • x u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loose and Tight Nodes Let x ∗ be a vertex sol. of ( LP ) . . 25 . 75 . 25 . 5 . 25 . 25

  51. u x w u x w . and discard fractions PLAN: reallocate . : 0 . 0 . 12 . . . 0 . 0 . 0 . . . . . . r . . . . . . . . 0 . 0 1 2. return integral part . . push fraction down to some do nothing . 1. for each . . . . w P . • 0 • x u A node u is tight w.r.t. x if . . 1 w P • 0 • x u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loose and Tight Nodes Let x ∗ be a vertex sol. of ( LP ) . A node u is loose w.r.t. x ∗ if . 25 . 75 . 25 . 5 . 25 . 25

  52. u x w u x w . and discard fractions PLAN: reallocate . : . . . . . . r . . . . 12 . . . . . . . . . . . . . w P . . 2. return integral part . . push fraction down to some do nothing . 1. for each . . . • 1 w P • 0 • x u A node u is tight w.r.t. x if . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loose and Tight Nodes Let x ∗ be a vertex sol. of ( LP ) . A node u is loose w.r.t. x ∗ if . 25 • x ∗ u > 0 . 75 . 25 . 5 . 25 . 25

  53. u x w . and discard fractions PLAN: reallocate . : . . . . r . . . . . . 12 . . . . . . . . . . . . . . . . 2. return integral part . . push fraction down to some do nothing . 1. for each . . . . 1 w P • 0 • x u A node u is tight w.r.t. x if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loose and Tight Nodes Let x ∗ be a vertex sol. of ( LP ) . A node u is loose w.r.t. x ∗ if . 25 • x ∗ u > 0 . 75 • ∑ u x w < 1 w ∈ P . 25 . 5 . 25 . 25

  54. u x w . and discard fractions PLAN: reallocate . : 12 . . . . . . 0 . 0 . 0 . . . r 0 . . . . . . . . . . . . . 1 2. return integral part . . push fraction down to some do nothing . 1. for each . . . . w P 0 • 0 • x u . . . . 0 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loose and Tight Nodes Let x ∗ be a vertex sol. of ( LP ) . A node u is loose w.r.t. x ∗ if . 25 • x ∗ u > 0 . 75 • ∑ u x w < 1 w ∈ P . 25 A node u is tight w.r.t. x ∗ if . 5 . 25 . 25

  55. u x w . and discard fractions PLAN: reallocate . : 12 r . . . . . . . . . . . . . . . . . . . . . . . . . 2. return integral part . . push fraction down to some do nothing . 1. for each . . . . 1 w P • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loose and Tight Nodes Let x ∗ be a vertex sol. of ( LP ) . A node u is loose w.r.t. x ∗ if . 25 • x ∗ u > 0 . 75 • ∑ u x w < 1 w ∈ P . 25 A node u is tight w.r.t. x ∗ if . 5 . 25 • x ∗ u > 0 . 25

  56. . and discard fractions PLAN: reallocate . : . . . . . . . . . 12 . r . . . . . . . . . . . . . . 2. return integral part . . push fraction down to some do nothing . 1. for each . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loose and Tight Nodes Let x ∗ be a vertex sol. of ( LP ) . A node u is loose w.r.t. x ∗ if . 25 • x ∗ u > 0 . 75 • ∑ u x w < 1 w ∈ P . 25 A node u is tight w.r.t. x ∗ if . 5 . 25 • x ∗ u > 0 . 25 • ∑ u x w = 1 w ∈ P

  57. 12 . 0 . . . . . . . r . . . . 0 . . . . . . . . . . . . . . . 2. return integral part . . push fraction down to some do nothing . 1. for each . . . . . 0 . . . 0 . 0 . 0 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loose and Tight Nodes Let x ∗ be a vertex sol. of ( LP ) . A node u is loose w.r.t. x ∗ if . 25 • x ∗ u > 0 . 75 • ∑ u x w < 1 w ∈ P . 25 A node u is tight w.r.t. x ∗ if . 5 . 25 • x ∗ u > 0 . 25 • ∑ u x w = 1 w ∈ P . and discard fractions PLAN: reallocate { . :

  58. . at most OPT . . have to become few . : Sparsity Lemma 13 We need to reduce L ! Number of loose nodes at most L (depth of tree). . . . Bound on number of . We want loss from reallocating • ad-hoc guessing • tree transformations and reallocation light! . . . PLAN - Reallocate Loose Nodes

  59. . have to become few . : Sparsity Lemma 13 . We need to reduce L ! Number of loose nodes at most L (depth of tree). . . . Bound on number of We want loss from reallocating • ad-hoc guessing • tree transformations and reallocation light! . . . PLAN - Reallocate Loose Nodes . at most ϵ OPT .

  60. . : Sparsity Lemma 13 . We need to reduce L ! Number of loose nodes at most L (depth of tree). . . . Bound on number of We want loss from reallocating • ad-hoc guessing • tree transformations and reallocation light! . . . PLAN - Reallocate Loose Nodes . at most ϵ OPT . . have to become few

  61. . : Sparsity Lemma 13 Bound on number of We need to reduce L ! Number of loose nodes at most L (depth of tree). . . . . • ad-hoc guessing We want loss from reallocating • tree transformations and reallocation light! . . . PLAN - Reallocate Loose Nodes . at most ϵ OPT . ⇐ . have to become few

  62. . : Sparsity Lemma 13 Bound on number of We need to reduce L ! Number of loose nodes at most L (depth of tree). . . . . • ad-hoc guessing We want loss from reallocating • tree transformations and reallocation light! . . . PLAN - Reallocate Loose Nodes . at most ϵ OPT . ⇐ . have to become few

  63. Sparsity Lemma 13 Bound on number of We need to reduce L ! Number of loose nodes at most L (depth of tree). . . . . • ad-hoc guessing We want loss from reallocating • tree transformations and reallocation light! . . . PLAN - Reallocate Loose Nodes . at most ϵ OPT . ⇐ . have to become few . :

  64. We need to reduce L ! 13 We want loss from reallocating Number of loose nodes at most L (depth of tree). . . . . Bound on number of • ad-hoc guessing • tree transformations and reallocation light! . . . PLAN - Reallocate Loose Nodes . at most ϵ OPT . ⇐ . have to become few . : Sparsity Lemma

  65. 13 We want loss from reallocating We need to reduce L ! Number of loose nodes at most L (depth of tree). . . . . Bound on number of • ad-hoc guessing • tree transformations and reallocation light! . . . PLAN - Reallocate Loose Nodes . at most ϵ OPT . ⇐ . have to become few . : Sparsity Lemma

  66. • Poly-time transformation. 1 / 2 optimal value LP orig . 14 . . . . 1 . . . 2 . . . 1 . . . 4 . . 1 . . . . . 2 . . . 3 . . 6 15 . . . 16 . . . 1 . . . . . . 2 . . . 1 . . 1 4 . . . 1 . . . . . 1 . . 7 . . . 25 . . 1 . . . . 1 . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 2 i , i log L layers. • Compressed tree has • Optimal value LP comp . . connect erase 0 1 l . . . . push down c u 4 . 2 . . . r . . . 1 . . . 3 . . 8 . . . . 9 . . . 11 . . 1 . . 1 1 . . . 1 . . . . . . . 3 . . . 1 . . 1 . . . . 1 . . . 10 . . 1 . . . . 12 . . . 1 . 7 . 1 1 . . . 3 . . . . . . . 5 . . . 1 . . . . . 10 1 . . . 9 . . . . . . . 23 . . . 28 . . . . 2 . . . . 1 . . . 1 . 7 . 3 . . . 6 . . . . . . . . 13 . . . 1 . . 1 . . . . 2 . . . 4 . . 12 . 1 2 . . . 1 . . . . . . . 3 . . . 6 . . 1 . . . . 18 . 1 . . . 1 . . . 2 . . . 1 . . 22 . 4 . . . . . . . 1 19 . . . . . . 1 . . . 2 . Compression - Reducing Depth L t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

  67. • Poly-time transformation. 1 / 2 optimal value LP orig . 14 2 1 . . . 1 . . . . . . . 1 . . . 4 . . 1 . . . . . 2 . . . 3 . . . 15 . . . 16 . . . . . 6 . . . . 2 . . . 1 . . . 4 . . . 1 . . 1 . . . . . 7 . . . 25 . . . 1 . . . 1 . . . 2 1 . . . . . . . . . . . . . . . . . . . . . . . . 2 i , i log L layers. • Compressed tree has • Optimal value LP comp . . connect erase 0 1 l . . . . push down c u 4 . 2 . . . r 1 . . 1 . . . 3 . . 8 . . . . 9 . . . 11 . 1 . . 1 1 . . . 1 . . . . . . . 3 . . . 1 . . . . . . . 1 . . . 10 . . 1 . . . . 12 . . . 1 . 7 . 1 1 . . . 3 . . . . . . . 5 . . . 1 . . . . . 10 1 . . . 9 . . . . . . . 23 . . . 28 . . . . 2 . . . . 1 . . . 1 . 7 . 3 . . . 6 . . . . . . . . . 13 . . . 1 . . 12 1 . . . 2 . . . 4 . . . . . 2 . . . 1 . . 1 . . . . 3 . . . 6 . 1 . . 1 22 . . . 1 . . . . . . . 2 . . . 1 . . . 4 . . 18 . . . . 1 . 19 2 . . . . . 1 . . . . Compression - Reducing Depth L t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

  68. • Poly-time transformation. 1 / 2 optimal value LP orig . 14 2 1 . . . 1 . . . . . . . 1 . . . 4 . . 1 . . . . . 2 . . . 3 . . . 15 . . . 16 . . . . . 6 . . . . 2 . . . 1 . . . 4 . . . 1 . . 1 . . . . . 7 . . . 25 . . . 1 . . . 1 . . . 2 1 . . . . . . . . . . . . . . . . . . . . . . . . 2 i , i log L layers. • Compressed tree has • Optimal value LP comp . . connect erase 0 1 l . . . . push down c u 4 . 2 . . . r 1 . . 1 . . . 3 . . 8 . . . . 9 . . . 11 . 1 . . 1 1 . . . 1 . . . . . . . 3 . . . 1 . . . . . . . 1 . . . 10 . . 1 . . . . 12 . . . 1 . 7 . 1 1 . . . 3 . . . . . . . 5 . . . 1 . . . . . 10 1 . . . 9 . . . . . . . 23 . . . 28 . . . . 2 . . . . 1 . . . 1 . 7 . 3 . . . 6 . . . . . . . . . 13 . . . 1 . . 12 1 . . . 2 . . . 4 . . . . . 2 . . . 1 . . 1 . . . . 3 . . . 6 . 1 . . 1 22 . . . 1 . . . . . . . 2 . . . 1 . . . 4 . . 18 . . . . 1 . 19 2 . . . . . 1 . . . . Compression - Reducing Depth L t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

  69. • Poly-time transformation. 1 / 2 optimal value LP orig . 14 . . . 1 . . . 2 . 1 . 1 . . . 4 . . . . . . 15 2 . . . 3 . . . . . . . 16 . . . 1 . 6 . . . . 2 . . . 1 . . 4 . . . . 1 . . . 1 . 1 . 1 7 . . . 25 . . . . . . . 1 . . . 2 . . . 1 . . . . . . . . . . . . . . . . . . . r . . 1 . log L layers. • Compressed tree has • Optimal value LP comp . . connect erase . . push down . c u . . . . . . . . . . . . . . 3 . . . 8 . . 1 9 . . . 11 . . . . . . . . 1 . . . 1 . . 3 . . . . 1 . . . 1 . . . . 1 1 . . . 10 . . . . . . . 12 . . . 1 . . . . . . . 2 3 . . . 1 . 7 . 5 . . . 1 . . . . 2 . . . . . 9 . . . 10 . . . 23 . . . 28 . . 1 . . . . . 1 . . . 1 . . . 3 . . . 6 . . . 7 1 . . 1 13 . . . 1 . . . . . . . 2 . . . . . . . . . . . . 1 . . . 1 . 12 . 3 . . . 6 . . . . 4 18 . . . . 1 . . . 2 . . 1 . . . 4 . . . 1 . . . 1 . 1 . . 1 . . . 19 . . . . 2 . . . 22 . Compression - Reducing Depth L t = 1 t = 2 t = 3 l = 2 i , i = 0 , 1 ,... × 2 t = 4 t = 5 t = 6 t = 7 × 4 t = 8

  70. • Poly-time transformation. 1 / 2 optimal value LP orig . 14 . . . 1 . . . 2 . 1 . 1 . . . 4 . . . . . . 15 2 . . . 3 . . . . . . . 16 . . . 1 . 6 . . . . 2 . . . 1 . . 4 . . . . 1 . . . 1 . 1 . 1 7 . . . 25 . . . . . . . 1 . . . 2 . . . 1 . . . . . . . . . . . . . . . . . . . r . . 1 . log L layers. • Compressed tree has • Optimal value LP comp . . connect erase . . push down . c u . . . . . . . . . . . . . . 3 . . . 8 . . 1 9 . . . 11 . . . . . . . . 1 . . . 1 . . 3 . . . . 1 . . . 1 . . . . 1 1 . . . 10 . . . . . . . 12 . . . 1 . . . . . . . 2 3 . . . 1 . 7 . 5 . . . 1 . . . . 2 . . . . . 9 . . . 10 . . . 23 . . . 28 . . 1 . . . . . 1 . . . 1 . . . 3 . . . 6 . . . 7 1 . . 1 13 . . . 1 . . . . . . . 2 . . . . . . . . . . . . 1 . . . 1 . 12 . 3 . . . 6 . . . . 4 18 . . . . 1 . . . 2 . . 1 . . . 4 . . . 1 . . . 1 . 1 . . 1 . . . 19 . . . . 2 . . . 22 . Compression - Reducing Depth L t = 1 t = 2 t = 3 l = 2 i , i = 0 , 1 ,... × 2 t = 4 t = 5 t = 6 t = 7 × 4 t = 8

  71. • Poly-time transformation. 1 / 2 optimal value LP orig . 14 . . . 1 . . . 2 . 1 . 1 . . . 4 . . . . . . 15 2 . . . 3 . . . . . . . 16 . . . 1 . 6 . . . . 2 . . . 1 . . 4 . . . . 1 . . . 1 . 1 . 1 7 . . . 25 . . . . . . . 1 . . . 2 . . . 1 . . . . . . . . . . . . . . . . . . . r . . 1 . log L layers. • Compressed tree has • Optimal value LP comp . . connect erase . . push down . c u . . . . . . . . . . . . . . 3 . . . 8 . . 1 9 . . . 11 . . . . . . . . 1 . . . 1 . . 3 . . . . 1 . . . 1 . . . . 1 1 . . . 10 . . . . . . . 12 . . . 1 . . . . . . . 2 3 . . . 1 . 7 . 5 . . . 1 . . . . 2 . . . . . 9 . . . 10 . . . 23 . . . 28 . . 1 . . . . . 1 . . . 1 . . . 3 . . . 6 . . . 7 1 . . 1 13 . . . 1 . . . . . . . 2 . . . . . . . . . . . . 1 . . . 1 . 12 . 3 . . . 6 . . . . 4 18 . . . . 1 . . . 2 . . 1 . . . 4 . . . 1 . . . 1 . 1 . . 1 . . . 19 . . . . 2 . . . 22 . Compression - Reducing Depth L t = 1 t = 2 t = 3 l = 2 i , i = 0 , 1 ,... × 2 t = 4 t = 5 t = 6 t = 7 × 4 t = 8

  72. • Poly-time transformation. 14 . . 1 . . . 2 . . 1 . . . . 4 . . . 6 . 1 . . . . . 3 . . . 15 . . . 16 . . . 1 . . . 7 . 4 2 . . . 1 . . . . . . . 1 . . . 1 . . . . . . . . 25 . . . 1 . 1 . 1 . . . 2 . . . 2 . . . . . . . . . . . . . . . . . . . r . . . . . push down log L layers. • Compressed tree has . . connect erase . . . c u . . . . . . . . . 1 . . . . 3 . . . 8 . . 9 . . . . 11 . . . 1 . 1 . 3 1 . . . 1 . . . . . . . 1 . . . 1 . . . . 2 1 1 . . . 10 . . . . . . . 12 . . . 1 . . . . . . . . . . . . 1 . 7 . 5 . . . 1 . . . . 2 . . . . . 9 . . . 10 . . . 23 . . . 28 . . 1 . . . . . 1 . . . 1 . . . 3 . . . 6 . . . 7 1 3 . 1 1 . . . . . . 2 . . . . . . . 4 . . 1 . 18 . . . . . . 6 . . 12 . . . . 13 . . . 1 . . . . . . 2 . . . 1 . 4 1 . . . 1 . . . 1 . . . . . 19 . . . 1 . . 2 . . . . 22 . . . 1 . 3 Compression - Reducing Depth L t = 1 t = 2 t = 3 l = 2 i , i = 0 , 1 ,... × 2 t = 4 t = 5 t = 6 t = 7 × 4 t = 8 • Optimal value ( LP comp ) ≥ 1 / 2 optimal value ( LP orig ) .

  73. • Poly-time transformation. 14 . . . . 2 . . . 1 . . . 4 . . . 6 . . 1 . 7 . . 3 . . . 15 . . 16 . . . . 1 . . . 1 . . . . . . . 1 . . . 4 . . . 1 . . . 1 . . 2 . . . . 25 . . . 1 . . 1 . . . . 2 . . . 1 . . 2 . . . . . . . . . . . . . . . r . . 1 . . . . . . . connect erase . . . push down c u . . . . . . . . . . . 1 2 . . . . 8 . . . 9 . . . 11 . . . 1 . . 3 . . . . . 1 . . . 3 . . . 1 . . . 1 . . . 1 . . . 1 1 . . . 10 . . . . . . . 12 . . . 1 . . . . . . . 3 . . . 1 . . 7 5 . . . 1 . . . . 2 1 . . . . 9 . . . 10 . . . 23 . . . 28 . . 1 . . . . . 1 . . . 1 . . . 3 . . . 6 . . . 7 . . . . . . 1 . . . 1 . . 13 2 . . . 4 . . . . . . . . 1 . . . 1 . . 3 . . . . 6 . . . 12 . 18 . . . . 1 . . . 2 . . . 1 . . 4 . . . 1 . . . 1 . . . 1 . . . 1 2 . . . . . . 19 22 . . . Compression - Reducing Depth L t = 1 t = 2 t = 3 l = 2 i , i = 0 , 1 ,... × 2 t = 4 t = 5 t = 6 t = 7 × 4 t = 8 • Optimal value ( LP comp ) ≥ 1 / 2 optimal value ( LP orig ) . • Compressed tree has ≈ log ( L ) layers.

  74. 14 . . . . 2 . . . 1 . . . 4 . . . 6 . . 1 . 7 . . 3 . . . 15 . . 16 . . . . 1 . . . 1 . . . . . . 1 . . . 4 . . 2 1 . . . 1 . . . . . . . . 25 . . . 1 . . 1 . . . . 2 . . . 1 . . 2 . . . . . . . . . . . . . . . . r . . 1 . . . . . . . connect erase . . . push down c u . . . . . . . . . . . 1 . . . . . 8 . . . 9 . . . 11 . . . 1 . . 3 . . . . . 1 . . . 3 . . . 1 . . . 1 . . . 1 2 . . 1 1 . . . 10 . . . . . . . 12 . . . 1 . . . . . . . 3 . . . 1 . . 7 5 . . . 1 . . . . 2 1 . . . . 9 . . . 10 . . . 23 . . . 28 . . 1 . . . . . 1 . . . 1 . . . 3 . . . 6 . . . 7 . . . . . . 1 . . . 1 . . 13 2 . . . 4 . . . . . . 3 1 . . . 1 . . . . . . . 6 . . . 12 . 18 . . . . 1 . . . 2 . . . 1 . . 4 . . . 1 . . . 1 . . . 1 . . . 2 1 . . . . . . 22 19 . . . Compression - Reducing Depth L t = 1 t = 2 t = 3 l = 2 i , i = 0 , 1 ,... × 2 t = 4 t = 5 t = 6 t = 7 × 4 t = 8 • Optimal value ( LP comp ) ≥ 1 / 2 optimal value ( LP orig ) . • Compressed tree has ≈ log ( L ) layers. • Poly-time transformation.

  75. n , n Lemma optimal value LP orig . • Compressed tree has O log L / 15 • Poly-time transformation. layers. 1 • Optimal value LP comp . . . Previously, we selected l 0 1 ? , 0 1 1 What if we select l 0 1 2 i , i δ -compression

  76. n , n Lemma optimal value LP orig . • Compressed tree has O log L / . • Poly-time transformation. layers. 1 • Optimal value LP comp 15 . . 0 1 ? , 0 1 1 What if we select l δ -compression Previously, we selected l = 2 i , i = 0 , 1 , . . .

  77. Lemma optimal value LP orig . • Compressed tree has O log L / . . . • Optimal value LP comp 1 layers. • Poly-time transformation. 15 δ -compression Previously, we selected l = 2 i , i = 0 , 1 , . . . What if we select l = ⌊ ( 1 + δ ) n ⌋ , n = 0 , 1 , . . . , δ ∈ ] 0 , 1 [ ?

  78. • Compressed tree has O log L / . . . layers. • Poly-time transformation. 15 δ -compression Previously, we selected l = 2 i , i = 0 , 1 , . . . What if we select l = ⌊ ( 1 + δ ) n ⌋ , n = 0 , 1 , . . . , δ ∈ ] 0 , 1 [ ? Lemma • Optimal value ( LP comp ) ≥ ( 1 − δ ) optimal value ( LP orig ) .

  79. . . . layers. • Poly-time transformation. 15 δ -compression Previously, we selected l = 2 i , i = 0 , 1 , . . . What if we select l = ⌊ ( 1 + δ ) n ⌋ , n = 0 , 1 , . . . , δ ∈ ] 0 , 1 [ ? Lemma • Optimal value ( LP comp ) ≥ ( 1 − δ ) optimal value ( LP orig ) . ( log L / δ ) • Compressed tree has O

  80. . . . layers. 15 δ -compression Previously, we selected l = 2 i , i = 0 , 1 , . . . What if we select l = ⌊ ( 1 + δ ) n ⌋ , n = 0 , 1 , . . . , δ ∈ ] 0 , 1 [ ? Lemma • Optimal value ( LP comp ) ≥ ( 1 − δ ) optimal value ( LP orig ) . ( log L / δ ) • Compressed tree has O • Poly-time transformation.

  81. 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . loose 2 . 0 . 1 . . 1 . . 8 . tight . . loss . critical . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Nodes - Bounding Loss From Singular Reallocation . 9 . 8 . 1 . 1 . 2

  82. and discard fractions 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tight . . loss . critical . . . . . . . 1. for each . do nothing push fraction down to some . . 2. return integral part loose 1 . . . . . . . . . . r . . . . . . 8 . 2 . 0 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Nodes - Bounding Loss From Singular Reallocation . 9 . 8 . 1 . 1 . 2 PLAN: reallocate { . :

  83. and discard fractions 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tight . . loss . critical . . . . . . . 1. for each . do nothing push fraction down to some . . 2. return integral part loose 1 . . . . . . . . . . r . . . . . . 8 . 2 . 0 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Nodes - Bounding Loss From Singular Reallocation . 9 . 8 . 1 . 1 . 2 PLAN: reallocate { . :

  84. and discard fractions 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tight . . loss . critical . . . . . . . 1. for each . do nothing push fraction down to some . . 2. return integral part loose 1 . . . . . . . . . . r . . . . . . 8 . 2 . 0 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Nodes - Bounding Loss From Singular Reallocation . 9 . 8 . 1 . 1 . 2 PLAN: reallocate { . :

  85. and discard fractions 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tight . . loss . critical . . . . . . . 1. for each . do nothing push fraction down to some . . 2. return integral part loose . . . . . . . . . r . 8 . 2 9 1 . 1 . 1 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Nodes - Bounding Loss From Singular Reallocation . 8 . 1 . 2 PLAN: reallocate { . :

  86. 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . loose . . tight . . loss . critical . . . . . . 1. for each . do nothing push fraction down to some . . 2. return integral part . 1 . 2 . . . . . . . r . 8 . . . 9 . 1 . 1 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Nodes - Bounding Loss From Singular Reallocation . 8 . 1 . 2 . and discard fractions PLAN: reallocate { . :

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend