finite volume method
play

Finite Volume Method An Introduction Praveen. C CTFD Division - PowerPoint PPT Presentation

Finite Volume Method An Introduction Praveen. C CTFD Division National Aerospace Laboratories Bangalore 560 037 email: praveen@cfdlab.net April 7, 2006 Praveen. C (CTFD, NAL) FVM CMMACS 1 / 65 Outline Divergence theorem 1 Conservation


  1. Finite Volume Method An Introduction Praveen. C CTFD Division National Aerospace Laboratories Bangalore 560 037 email: praveen@cfdlab.net April 7, 2006 Praveen. C (CTFD, NAL) FVM CMMACS 1 / 65

  2. Outline Divergence theorem 1 Conservation laws 2 3 Convection-diffusion equation FVM in 1-D 4 Stability of numerical scheme 5 Non-linear conservation law 6 Grids and finite volumes 7 FVM in 2-D 8 Summary 9 10 Further reading Praveen. C (CTFD, NAL) FVM CMMACS 2 / 65

  3. Outline Divergence theorem 1 Conservation laws 2 3 Convection-diffusion equation FVM in 1-D 4 Stability of numerical scheme 5 Non-linear conservation law 6 Grids and finite volumes 7 FVM in 2-D 8 Summary 9 10 Further reading Praveen. C (CTFD, NAL) FVM CMMACS 3 / 65

  4. Divergence theorem In Cartesian coordinates, � q = ( u , v , w ) q = ∂ u ∂ x + ∂ v ∂ y + ∂ w ∇ · � ∂ z Divergence theorem dV n � � ∇ · � � q · ˆ q d V = n d S V V ∂ V Praveen. C (CTFD, NAL) FVM CMMACS 4 / 65

  5. Outline Divergence theorem 1 Conservation laws 2 3 Convection-diffusion equation FVM in 1-D 4 Stability of numerical scheme 5 Non-linear conservation law 6 Grids and finite volumes 7 FVM in 2-D 8 Summary 9 10 Further reading Praveen. C (CTFD, NAL) FVM CMMACS 5 / 65

  6. Conservation laws Basic laws of physics are conservation laws: mass, momentum, energy, charge Control volume n Streamlines Rate of change of φ in V = -(net flux across ∂ V ) ∂ � � � F · ˆ φ d V = − n d S ∂ t V ∂ V Praveen. C (CTFD, NAL) FVM CMMACS 6 / 65

  7. Conservation laws If � F is differentiable, use divergence theorem ∂ � � ∇ · � φ d V = − F d V ∂ t V V or � � ∂φ � ∂ t + ∇ · � F d V = 0 , for every control volume V V ∂φ ∂ t + ∇ · � F = 0 In Cartesian coordinates, � F = ( f , g , h ) ∂φ ∂ t + ∂ f ∂ x + ∂ g ∂ y + ∂ h ∂ z = 0 Praveen. C (CTFD, NAL) FVM CMMACS 7 / 65

  8. Differential and integral form Differential form ∂φ ∂ t + ∇ · � F = 0 ∂ ∂ t (conserved quantity) + divergence(flux) = 0 Integral form ∂ � � � F · ˆ φ d V = − n d S ∂ t ∂ V V Praveen. C (CTFD, NAL) FVM CMMACS 8 / 65

  9. Mass conservation equation φ = ρ , � F = ρ� q � F · ˆ n d S = amount of mass flowing across d S per unit time ∂ � � ρ� q · ˆ ρ d V + n d S = 0 ∂ t V ∂ V Using divergence theorem ∂ � � ∇ · ( ρ� ρ d V + q ) d S = 0 ∂ t V V or � ∂ρ � � ∂ t + ∇ · ( ρ� q ) d V = 0 V Praveen. C (CTFD, NAL) FVM CMMACS 9 / 65

  10. Mass conservation equation Differential form ∂ρ ∂ t + ∇ · ( ρ� q ) = 0 In Cartesian coordinates, � q = ( u , v , w ) ∂ρ ∂ t + ∂ ∂ x ( ρ u ) + ∂ ∂ y ( ρ v ) + ∂ ∂ z ( ρ w ) = 0 Non-conservative form ∂ρ ∂ t + u ∂ρ ∂ x + v ∂ρ ∂ y + w ∂ρ � ∂ u ∂ x + ∂ v ∂ y + ∂ w � ∂ z + ρ = 0 ∂ z or in vector notation ∂ρ ∂ t + � q · ∇ ρ + ρ ∇ · � q = 0 Praveen. C (CTFD, NAL) FVM CMMACS 10 / 65

  11. Navier-Stokes equations ∂ρ ∂ t + ∇ · ( ρ� Mass: q ) = 0 ∂ ∂ t ( ρ� q ) + ∇ · ( ρ� q � q ) + ∇ p = ∇ · τ Momentum: q · τ ) + ∇ · � ∂ E ∂ t + ∇ · ( E + p ) � = ∇ · ( � q Q Energy: Praveen. C (CTFD, NAL) FVM CMMACS 11 / 65

  12. Convection and diffusion ∂ρ ∂ t + ∇ · ( ρ� Mass: q ) = 0 ∂ ∂ t ( ρ� q ) + ∇ · ( ρ� q � q ) + ∇ p = ∇ · τ Momentum: q · τ ) + ∇ · � ∂ E ∂ t + ∇ · ( E + p ) � = ∇ · ( � q Q Energy: Praveen. C (CTFD, NAL) FVM CMMACS 12 / 65

  13. Outline Divergence theorem 1 Conservation laws 2 3 Convection-diffusion equation FVM in 1-D 4 Stability of numerical scheme 5 Non-linear conservation law 6 Grids and finite volumes 7 FVM in 2-D 8 Summary 9 10 Further reading Praveen. C (CTFD, NAL) FVM CMMACS 13 / 65

  14. Convection-diffusion equation Convection-diffusion equation ∂ x = µ∂ 2 u ∂ u ∂ t + a ∂ u ∂ x 2 a , µ are constants, µ > 0 Conservation law form ∂ u ∂ t + ∂ f = 0 ∂ x f c + f d = f f c = au − µ∂ u f d = ∂ x Praveen. C (CTFD, NAL) FVM CMMACS 14 / 65

  15. Convection equation Scalar convection equation ∂ u ∂ t + a ∂ u ∂ x = 0 Exact solution u ( x , t + ∆ t ) = u ( x − a ∆ t , t ) Wave-like solution: convected at speed a Wave moves in a particular direction Solution can be discontinuous Hyperbolic equation Praveen. C (CTFD, NAL) FVM CMMACS 15 / 65

  16. Scalar convection equation a > 0 t Praveen. C (CTFD, NAL) FVM CMMACS 16 / 65

  17. Scalar convection equation a > 0 a ∆ t ∆ t t t+ Praveen. C (CTFD, NAL) FVM CMMACS 17 / 65

  18. Convection equation Scalar convection equation ∂ u ∂ t + a ∂ u ∂ x = 0 Exact solution u ( x , t + ∆ t ) = u ( x − a ∆ t , t ) Wave-like solution: convected at speed a Wave moves in a particular direction Solution can be discontinuous Hyperbolic equation Praveen. C (CTFD, NAL) FVM CMMACS 18 / 65

  19. Diffusion equation Scalar diffusion equation ∂ t = µ∂ 2 u ∂ u ∂ x 2 Solution u ( x , t ) ∼ e − µ k 2 t f ( x ; k ) Solution is smooth and decays with time Elliptic equation Praveen. C (CTFD, NAL) FVM CMMACS 19 / 65

  20. Diffusion equation: Initial condition t Praveen. C (CTFD, NAL) FVM CMMACS 20 / 65

  21. Diffusion equation t ∆ t t+ Praveen. C (CTFD, NAL) FVM CMMACS 21 / 65

  22. Diffusion equation Scalar diffusion equation ∂ t = µ∂ 2 u ∂ u ∂ x 2 Solution u ( x , t ) ∼ e − µ k 2 t f ( x ; k ) Solution is smooth and decays with time Elliptic equation Praveen. C (CTFD, NAL) FVM CMMACS 22 / 65

  23. Outline Divergence theorem 1 Conservation laws 2 3 Convection-diffusion equation FVM in 1-D 4 Stability of numerical scheme 5 Non-linear conservation law 6 Grids and finite volumes 7 FVM in 2-D 8 Summary 9 10 Further reading Praveen. C (CTFD, NAL) FVM CMMACS 23 / 65

  24. FVM in 1-D: Conservation law 1-D conservation law ∂ u ∂ t + ∂ ∂ x f ( u ) = 0 , a < x < b , t > 0 Initial condition u ( x , 0 ) = g ( x ) Boundary conditions at x = a and/or x = b Praveen. C (CTFD, NAL) FVM CMMACS 24 / 65

  25. FVM in 1-D: Grid Divide computational domain into N cells a = x 1 / 2 , x 1 + 1 / 2 , x 2 + 1 / 2 , . . . , x N − 1 / 2 , x N + 1 / 2 = b hi i=N i=1 i i−1/2 i+1/2 x=b x=a Cell number i C i = [ x i − 1 / 2 , x i + 1 / 2 ] Cell size (width) h i = x i + 1 / 2 − x i − 1 / 2 Praveen. C (CTFD, NAL) FVM CMMACS 25 / 65

  26. FVM in 1-D Conservation law applied to cell C i � x i + 1 / 2 � ∂ u ∂ t + ∂ f � d x = 0 ∂ x x i − 1 / 2 Ci i−3/2 i−1/2 i+1/2 i+3/2 h i Cell-average value � x i + 1 / 2 u i ( t ) = 1 u ( x , t ) d x h i x i − 1 / 2 Integral form d u i d t + f ( x i + 1 / 2 , t ) − f ( x i − 1 / 2 , t ) = 0 h i Praveen. C (CTFD, NAL) FVM CMMACS 26 / 65

  27. FVM in 1-D i=N i=1 i−1 i i+1 i−1/2 i+1/2 x=b x=a Cell-average value is dicontinuous at the interface What is the flux ? Numerical flux function f ( x i + 1 / 2 , t ) ≈ F i + 1 / 2 = F ( u i , u i + 1 ) Praveen. C (CTFD, NAL) FVM CMMACS 27 / 65

  28. FVM in 1-D Finite volume update equation (ODE) d u i h i d t + F i + 1 / 2 − F i − 1 / 2 = 0 , i = 1 , . . . , N Telescopic collapse of fluxes N � d u i � � h i d t + F i + 1 / 2 − F i − 1 / 2 = 0 i = 1 N d � h i u i + F N + 1 / 2 − F 1 / 2 = 0 d t i = 1 Rate of change of total u = -(Net flux across the domain) hi i=N i=1 i i−1/2 i+1/2 x=b x=a Praveen. C (CTFD, NAL) FVM CMMACS 28 / 65

  29. Time integration At time t = 0 set the initial condition � x i + 1 / 2 i := u i ( 0 ) = 1 u o g ( x ) d x h i x i − 1 / 2 Choose a time step ∆ t (stability and accuracy) or M Break time ( 0 , T ) into M intervals ∆ t = T t n = n ∆ t , M , n = 0 , 1 , 2 , . . . , M For n = 0 , 1 , 2 , . . . , M , compute u n i = u i ( t n ) ≈ u ( x i , t n ) i − ∆ t u n + 1 = u n ( F n i + 1 / 2 − F n i − 1 / 2 ) i h i Praveen. C (CTFD, NAL) FVM CMMACS 29 / 65

  30. Numerical Flux Function Take average of the left and right cells U i+1 U i i+1/2 F i + 1 / 2 = 1 2 [ f ( u i ) + f ( u i + 1 )] Central difference scheme d u i d t + f i + 1 − f i − 1 = 0 h i Suitable for elliptic equations (diffusion phenomena) Unstable for hyperbolic equations (convection phenomena) Praveen. C (CTFD, NAL) FVM CMMACS 30 / 65

  31. Convection equation: Centered flux Convection equation, a = constant ∂ u ∂ t + a ∂ u ∂ x = 0 , f ( u ) = au Centered flux, F i + 1 / 2 = ( au i + au i + 1 ) / 2 d u i d t + au i + 1 − u i − 1 = 0 h i U i+1 U i i+1/2 Praveen. C (CTFD, NAL) FVM CMMACS 31 / 65

  32. Convection equation: Upwind flux Upwind flux U i+1 U i i+1/2 � au i , if a > 0 F i + 1 / 2 = au i + 1 , if a < 0 or F i + 1 / 2 = a + | a | u i + a − | a | u i + 1 2 2 Praveen. C (CTFD, NAL) FVM CMMACS 32 / 65

  33. Convection equation: Upwind flux Upwind scheme d u i d t + au i − u i − 1 = 0 , a > 0 if h i d u i d t + au i + 1 − u i = 0 , a < 0 if h i or d t + a + | a | u i − u i − 1 + a − | a | u i + 1 − u i d u i = 0 2 h i 2 h i Praveen. C (CTFD, NAL) FVM CMMACS 33 / 65

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend