finding monotone patterns in sublinear time
play

Finding Monotone Patterns in Sublinear Time Erik Waingarten - PowerPoint PPT Presentation

Finding Monotone Patterns in Sublinear Time Erik Waingarten (Columbia University) Cl ement Canonne (Stanford University) Omri Ben-Eliezer (Tel-Aviv University) Shoham Letzter (ETH Zurich) 1 / 14 Testing Monotonicity of an Array: Sortedness


  1. Finding Monotone Patterns in Sublinear Time Erik Waingarten (Columbia University) Cl´ ement Canonne (Stanford University) Omri Ben-Eliezer (Tel-Aviv University) Shoham Letzter (ETH Zurich) 1 / 14

  2. Testing Monotonicity of an Array: Sortedness 1 3 2 3 6 7 1 9 4 2 5 6 7 Given query access to an unknown f : [ n ] → R and a parameter ε > 0: If f monotone, accept w.p. > 2 / 3; If f is ε -far from monotone, reject w.p. > 2 / 3; Minimum query complexity in terms of n and ε ? 2 / 14

  3. Testing Monotonicity of an Array: Sortedness 1 3 2 3 6 7 1 9 4 2 5 6 7 Given query access to an unknown f : [ n ] → R and a parameter ε > 0: If f monotone, accept w.p. > 2 / 3; If f is ε -far from monotone, reject w.p. > 2 / 3; Minimum query complexity in terms of n and ε ? If f is ε -far from monotone, find evidence: ◮ i , j ∈ [ n ] where i < j and f ( i ) > f ( j ). 2 / 14

  4. Testing Monotonicity of an Array: Sortedness 1 3 2 3 6 7 1 9 4 2 5 6 7 Given query access to an unknown f : [ n ] → R and a parameter ε > 0: If f monotone, accept w.p. > 2 / 3; If f is ε -far from monotone, reject w.p. > 2 / 3; Minimum query complexity in terms of n and ε ? If f is ε -far from monotone, find evidence: ◮ i , j ∈ [ n ] where i < j and f ( i ) > f ( j ). one-sided error. 2 / 14

  5. ε -Far-From-Monotone Sequences f is ε -far from monotone: for any monotone g : [ n ] → R , n 1 � 1 { f ( i ) � = g ( i ) } ≥ ε. n i =1 3 / 14

  6. ε -Far-From-Monotone Sequences f is ε -far from monotone: for any monotone g : [ n ] → R , n 1 � 1 { f ( i ) � = g ( i ) } ≥ ε. n i =1 Lemma Let f : [ n ] → R be ε -far from monotone. There exists set of disjoint pairs, ( i , j ) ∈ [ n ] 2 : i < j and f ( i ) > f ( j ) � � T = of size | T | ≥ ε n / 2 . 3 / 14

  7. Monotonicity Testing Theorem (Erg¨ un, Kannan, Kumar, Rubinfeld, Viswanathan 99) There exists a non-adaptive, one-sided algorithm for testing monotonicity of f : [ n ] → R making O ((log n ) /ε ) queries. 4 / 14

  8. Monotonicity Testing Theorem (Erg¨ un, Kannan, Kumar, Rubinfeld, Viswanathan 99) There exists a non-adaptive, one-sided algorithm for testing monotonicity of f : [ n ] → R making O ((log n ) /ε ) queries. Ω((log n ) /ε ) queries needed for non-adaptive algorithms. 4 / 14

  9. Monotonicity Testing Theorem (Erg¨ un, Kannan, Kumar, Rubinfeld, Viswanathan 99) There exists a non-adaptive, one-sided algorithm for testing monotonicity of f : [ n ] → R making O ((log n ) /ε ) queries. Ω((log n ) /ε ) queries needed for non-adaptive algorithms. Ω((log n ) /ε ) queries needed for adaptive algorithms too! [Fischer 04]. 4 / 14

  10. Testing Forbidden Order Patterns [Newman, Rabinovich, Rajendraprasad, Sohler 17] 5 / 14

  11. Testing Forbidden Order Patterns [Newman, Rabinovich, Rajendraprasad, Sohler 17] Definition Let k ∈ N and π = ( π 1 , . . . , π k ) be a permutation of [ k ]. Given f : [ n ] → R , the k -tuple ( i 1 , . . . , i k ) has order pattern π if: f ( i ℓ ) < f ( i m ) whenever π ℓ < π m . 5 / 14

  12. Testing Forbidden Order Patterns [Newman, Rabinovich, Rajendraprasad, Sohler 17] Definition Let k ∈ N and π = ( π 1 , . . . , π k ) be a permutation of [ k ]. Given f : [ n ] → R , the k -tuple ( i 1 , . . . , i k ) has order pattern π if: f ( i ℓ ) < f ( i m ) whenever π ℓ < π m . If f : [ n ] → R is ε -far from π -free, then there exists T ⊂ [ n ] k of disjoint violating k -tuples ( i 1 , . . . , i k ) with order pattern π of size at least ε n / k . 5 / 14

  13. Testing Forbidden Order Patterns [Newman, Rabinovich, Rajendraprasad, Sohler 17] Definition Let k ∈ N and π = ( π 1 , . . . , π k ) be a permutation of [ k ]. Given f : [ n ] → R , the k -tuple ( i 1 , . . . , i k ) has order pattern π if: f ( i ℓ ) < f ( i m ) whenever π ℓ < π m . If f : [ n ] → R is ε -far from π -free, then there exists T ⊂ [ n ] k of disjoint violating k -tuples ( i 1 , . . . , i k ) with order pattern π of size at least ε n / k . For fixed k and π , query complexity of testing π -freeness? 5 / 14

  14. Testing Forbidden Order Patterns [Newman, Rabinovich, Rajendraprasad, Sohler 17] Definition Let k ∈ N and π = ( π 1 , . . . , π k ) be a permutation of [ k ]. Given f : [ n ] → R , the k -tuple ( i 1 , . . . , i k ) has order pattern π if: f ( i ℓ ) < f ( i m ) whenever π ℓ < π m . If f : [ n ] → R is ε -far from π -free, then there exists T ⊂ [ n ] k of disjoint violating k -tuples ( i 1 , . . . , i k ) with order pattern π of size at least ε n / k . For fixed k and π , query complexity of testing π -freeness? Some sublinear in n upper bounds for general π . 5 / 14

  15. Testing Forbidden Order Patterns [Newman, Rabinovich, Rajendraprasad, Sohler 17] Definition Let k ∈ N and π = ( π 1 , . . . , π k ) be a permutation of [ k ]. Given f : [ n ] → R , the k -tuple ( i 1 , . . . , i k ) has order pattern π if: f ( i ℓ ) < f ( i m ) whenever π ℓ < π m . If f : [ n ] → R is ε -far from π -free, then there exists T ⊂ [ n ] k of disjoint violating k -tuples ( i 1 , . . . , i k ) with order pattern π of size at least ε n / k . For fixed k and π , query complexity of testing π -freeness? Some sublinear in n upper bounds for general π . π = (132) requires Ω( √ n ) queries for non-adaptive, one-sided algorithms. 5 / 14

  16. Testing Forbidden Order Patterns [Newman, Rabinovich, Rajendraprasad, Sohler 17] Definition Let k ∈ N and π = ( π 1 , . . . , π k ) be a permutation of [ k ]. Given f : [ n ] → R , the k -tuple ( i 1 , . . . , i k ) has order pattern π if: f ( i ℓ ) < f ( i m ) whenever π ℓ < π m . If f : [ n ] → R is ε -far from π -free, then there exists T ⊂ [ n ] k of disjoint violating k -tuples ( i 1 , . . . , i k ) with order pattern π of size at least ε n / k . For fixed k and π , query complexity of testing π -freeness? Some sublinear in n upper bounds for general π . π = (132) requires Ω( √ n ) queries for non-adaptive, one-sided algorithms. [Ben-Eliezer, Canonne 18] Many π have complexity a n 1 − 1 / ( k − Θ(1)) . 5 / 14

  17. Finding Monotone Patterns: π = (12 . . . k ) 6 / 14

  18. Finding Monotone Patterns: π = (12 . . . k ) Given query access to f : [ n ] → R and a parameter ε > 0 where: 6 / 14

  19. Finding Monotone Patterns: π = (12 . . . k ) Given query access to f : [ n ] → R and a parameter ε > 0 where: There exists T ⊂ [ n ] k of disjoint violating k -tuples T = { ( i 1 , . . . , i k ) : i 1 < · · · < i k and f ( i 1 ) < · · · < f ( i k ) } of size | T | ≥ ε n / k . 6 / 14

  20. Finding Monotone Patterns: π = (12 . . . k ) Given query access to f : [ n ] → R and a parameter ε > 0 where: There exists T ⊂ [ n ] k of disjoint violating k -tuples T = { ( i 1 , . . . , i k ) : i 1 < · · · < i k and f ( i 1 ) < · · · < f ( i k ) } of size | T | ≥ ε n / k . Find i 1 < · · · < i k where f ( i 1 ) < · · · < f ( i k ). 6 / 14

  21. Finding Monotone Patterns: π = (12 . . . k ) Given query access to f : [ n ] → R and a parameter ε > 0 where: There exists T ⊂ [ n ] k of disjoint violating k -tuples T = { ( i 1 , . . . , i k ) : i 1 < · · · < i k and f ( i 1 ) < · · · < f ( i k ) } of size | T | ≥ ε n / k . Find i 1 < · · · < i k where f ( i 1 ) < · · · < f ( i k ). Theorem (NRRS17) There is a non-adaptive algorithm with query complexity ((log n ) /ε ) O ( k 2 ) . 6 / 14

  22. Finding Monotone Patterns: π = (12 . . . k ) 7 / 14

  23. Finding Monotone Patterns: π = (12 . . . k ) Theorem (Upper bound) For k ∈ N , there exists a non-adaptive algorithm with query complexity (log n ) ⌊ log 2 k ⌋ · poly (1 /ε ) . 7 / 14

  24. Finding Monotone Patterns: π = (12 . . . k ) Theorem (Upper bound) For k ∈ N , there exists a non-adaptive algorithm with query complexity (log n ) ⌊ log 2 k ⌋ · poly (1 /ε ) . Theorem (Lower bound) � (log n ) ⌊ log 2 k ⌋ � Any non-adaptive algorithm needs to make Ω queries. 7 / 14

  25. The Case of k = 2 8 / 14

  26. The Case of k = 2 Let f : [ n ] → R and disjoint subset of pairs T of size ε n / 2 with T = { ( i , j ) ∈ [ n ] 2 : i < j and f ( i ) < f ( j ) } . 8 / 14

  27. The Case of k = 2 Let f : [ n ] → R and disjoint subset of pairs T of size ε n / 2 with T = { ( i , j ) ∈ [ n ] 2 : i < j and f ( i ) < f ( j ) } . [Erg¨ un, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair: 8 / 14

  28. The Case of k = 2 Let f : [ n ] → R and disjoint subset of pairs T of size ε n / 2 with T = { ( i , j ) ∈ [ n ] 2 : i < j and f ( i ) < f ( j ) } . [Erg¨ un, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair: Sample ℓ ∼ [ n ] uniformly and repeat the following for t iterations: 8 / 14

  29. The Case of k = 2 Let f : [ n ] → R and disjoint subset of pairs T of size ε n / 2 with T = { ( i , j ) ∈ [ n ] 2 : i < j and f ( i ) < f ( j ) } . [Erg¨ un, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair: Sample ℓ ∼ [ n ] uniformly and repeat the following for t iterations: ◮ Sample s ∼ { 0 , . . . , log 2 n } and i ∼ [ ℓ − 2 s , ℓ ] and query f ( i ). 8 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend