ferromagnet superconductor hybrid systems proximity
play

Ferromagnet/Superconductor hybrid systems, proximity effects Marco - PowerPoint PPT Presentation

Ferromagnet/Superconductor hybrid systems, proximity effects Marco Aprili 1 CSNSM-CNRS Bt.108 Universit Paris-Sud 91405 ORSAY and Ple Supraconductivit ESPCI 10, rue Vauquelin 75005 Paris Outline 1. Inhomogeneous


  1. Ferromagnet/Superconductor hybrid systems, proximity effects Marco Aprili 1 CSNSM-CNRS Bât.108 Université Paris-Sud 91405 ORSAY and “Pôle Supraconductivité” ESPCI 10, rue Vauquelin 75005 Paris

  2. Outline 1. Inhomogeneous superconductivity : gain & price of S/F nanostructures 2. Macroscopic and microscopic measurements 3. Josephson coupling in S/F/S (better S/F/I/S) Macroscopic Quantum-Mechanics : π -SQUIDs and π -rings 4.

  3. Superconductivity Cooper pair Order parameter = i ϕ ξ o Ψ Ψ e condensate o Coherence Length: ξ ο Phase Amplitude Below T c the system condenses in a macroscopic number of Cooper pairs

  4. Cooper Pairs Order parameter ψ S-wave p=0 l=0 x k -k Quantum Mechanics ∆ p θ = ∆ p x ψ Π -wave p?0 l=0 + + - - x k+ ∆ p -k+ ∆ p θ D-wave p=0 l=2

  5. The Fulde-Ferrell-Larkin-Ovchinnikov state Superconductor Superconductor + Ferromagnet Exchange interaction Singlet state +p F -p F -p F + ∆ p +p F + ∆ p ∆ p = E ex Fulde and Ferrell PR 135, A550 h v F Larkin and Ovchinnikov Sov.Phys. JETP 20, 762

  6. Never found, why ? scattering 1. Sensitivity to disorder : + < ∆ > Fermi = 0 - 2. Phase diagram : E ex ˜ ∆ usually E ex ˜ 0.1-1 eV ∆ ˜ 1 meV

  7. Ferromagnet/Superconductor proximity effect +p F -p F -p F + ∆ p +p F + ∆ p Ψ Superconductor Ferromagnet + + + - - d F

  8. Question : Where’s the gain ? Why S/F hybrid structures rather than bulk superconductors ?

  9. Andreev Reflection Superconductor Normal Metal e - e - No +p F +p F e - e - +p F -p F h + electron-hole excitation e - e - h + -p F -p F +p F Cooper pair

  10. Superconducting Correlation Propagation S N ψ e = e − iEt h × ψ 0 ( x) S F e - e - +E +E+E ex h + h + -E -E-E ex ψ h = e iEt h × ψ 0 ( x ) No condensate ϕ (E,x) = Et/ h As E<<E ex Phase coherence is lost when = ξ F x ˜ h v F /E ex ϕ (E,x) ˜ 1 ? ˜ h v F /E Coherent superposition of ψ e and ψ h ψ = ψ e + ψ h ∝ cos( E / ) E E ˜ E ex Th E Th =x/ h v F

  11. Answer 1. ξ F does not depend on ∆ . Superconducting correlations survive in F even if E ex >> ∆ Therefore S/F does not require comparable energy scales !!! 2. Only phase coherence is needed. No pairing equation in F. Therefore oscillations even in the dirty limit !!!

  12. But...Spin must be a good Quantum Number e - + E + E ex -E ex ψ = ψ e + ψ h ∝ cos( E / ) E Th ex is lost if Spin-Orbit scattering h + + E ex -E-E ex SO scattering Calculations by Demler et al. PRB 55, 15174 Condition : τ so v F > ξ F Therefore 1/ τ so < E ex 1/ τ so = 0.9 E ex 1/ τ so = 0.5 E ex 1/ τ so = 0.0

  13. The price to pay: Nanostructures ! ξ F = h v F /E ex ξ F ˜ 0.5-5 nm E ex ˜ 0.1-1 eV ξ N = h v F /K B T ξ N ˜ 1 µ m T ˜ 1 K Reduced to 0.1-1 nm in the dirty limit 1. Deposition of thin films by e-gun and magnetron sputtering (thickness control down to 0.1 nm) 2. Materials : Nb (high T c and H c2, small coherence length) Ferromagnetic materials and alloys : Gd, CuNi and PdNi E ex ˜ 0.01 eV ξ F ˜ 10 nm homogeneous thin films

  14. = R B + PdNi ρ o R s M s Hall (Orsay-group) Hall Normal Anomalous resisitivity Ni Ni R s ˜ ρ 2 30 50Å Ni=7.0% M s 20 ˜ 15 Å T=1.5K Ni=5.5% 10 2 ρ Hall / ρ Indirect exchange 0 Ni=2.4% -10 µ ˜ 2.4 µ B per Ni µ Ni = 0.6 µ B -20 Itinerant ferromagnetism -30 -8000 -4000 0 4000 8000 H(G)

  15. Curie’s Temperature 150 1.3 Ni =12% 100 T Curie 1.2 50 Å ρ Hall /ρ 2 (Ω -1 .cm -1 ) 50 1.1 R Hall ( Ω ) 0 1.0 H c =1000 G -50 0.9 -100 0.8 T=1.5 K -150 0.7 0 20 40 60 80 100 120 -4000 -2000 0 2000 4000 H (G) T (K)

  16. T c oscillations : Calculations solving the Usadel eqs. S/F Multilayer d M d S Radovic et al. PRB 44, 759 see also Buzdin et al. Sov. Phys. JETP 74, 124

  17. T c oscillations : measures BUT ξ F =1.35 nm other pair breaking mechanism ? dead layer ? Jiang et al. PRL 74, 314 see also: Strunk et al. PRB 49, 4053 Aarts et al. PRB 44, 7745

  18. The superconducting Density of States + 0-state + - π -state - 1.4 1.2 N s (E) 1.0 0.8 E ex >> ∆ S 0.6 -3 -2 -1 0 1 2 3 Kontos, Ph.D Thesis (Orsay) ∆ s Energy/ see also: Guoya Sun et al. PRB 65, 174508 Buzdin PRB 62, 11377

  19. Planar Tunnel Junctions Junction Area TEM I 1 A 2 B V Nb Al Si PdNi ∫ G N PdNi (E) ?f [ ] - = G n N PdNi (E F ) ?eV S FI N Substrate High energy and amplitude resolution

  20. BCS Density of States without PdNi 3.5 Nb=500Å T=350mK 3.0 G AC Tc=8.7K 2.5 n 2.0 G G DC + AC 1.5 1.0 junction fit BCS 0.5 ∆ = 1.42 meV 0.0 -4 -2 0 2 4 V DC Energy(meV)

  21. Tunneling Spectroscopy ξ F ˜ 50 Å Pd 1-x Ni x x ˜ 10% T c ˜ 100 K E ex ˜ 10 meV + 1.010 + 75 Å 1.005 Normalized conductance F 1.000 - 0.995 Ni=10 % T=350mK H=100 Gauss 0.990 50 Å 0.985 -3 -4 -2 0 2 4x10 Energy(eV)

  22. Density of States at Zero Energy - 1.005 1.000 + 0.995 N(0) 0.990 Theory R interface ˜ 10 -6 Ω 0.985 0.980 Kontos et al. PRL 86, 304 (2001) 0.975 0 1 2 3 4 5 d F / ξ F

  23. Josephson Coupling Macroscopically Microscopically +E+E ex e - F S 1 S 2 h + -E-E ex Current-phase relationship Cooper pair transfert I = I c sin θ 12 ? ? g? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Oscillations ~ Ψ

  24. Josephson Coupling I+ S F S I- Kontos et al. PRL 89, 137007 ( 2002 ) V- 80 d F1 d F2 V+ experiment at 1.5K 20 60 x10 theory 10 IcRn(µV) SIS -6 40 I (mA) Interface = 10 R Ω 0 ξ F = 46 Å -10 SIFS 20 -20 -3 -2 -1 0 1 2 3 V (mV) 0 40 60 80 100 120 140 160 180 I-V characteristics d F (Å) I=I c sin ∆θ I= - I c sin ∆θ π -junction 0-junction

  25. SFS Temperature dependence SFIS 12 11 I c ( µΑ) 10 9 8 7 1.5 2.0 2.5 3.0 3.5 4.0 4.5 T (K) I c R n ˜ 2nV I c R n ˜ 5 µ V V. Ryazanov et al., PRL 86 2427 (2001) Kontos et al. PRL 89, 137007 (2002)

  26. d F1 d F2 Quantum Interference Devices Resine mask SQUID I c F F After deposition and lift-off In collaboration with W. Guichard, O. Bourgeois & P. Gandit , CRTBT-Grenoble

  27. Diffraction Linearity :I c L<< Φ o I=2I c cos ( πΦ / Φ o + ϕ /2) 0 0 π 0 π π Guichard et al. PRL 90, 167001 (2003)

  28. Sponteneous Supercurrents   Free energy : 2 − φ 0 ) = LI 2 2 π I c cos 2 π ϕ =0 zero ring ( U φ , φ ext  φ + ϕ  ϕ = π π ring φ 0   magnetic term Josephson term zero ring, φ ext =0 π ring , φ ext =0 Groundstate = +/- Φ 0 /2 π ring I c L/ φ 0 >>1 φ=φ ext + LI - +

  29. Question : Can superconductivity be used to change the magnetic order ? How nano-structures can help on that ?

  30. Heterostructure Pd Fe < 1% . . . . . . . . 6nm d Nb Tc=8.5K 60nm Idea : χ Pd is reduced by induced superconductivity 1. Why proximity effect ? We do not need similar energy scales as in bulk superconductors. ∆ =1 meV E ex =0.1-1 eV 2. Why dilute alloys ? d> ξ F = 2-20nm

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend