fab towards flow aware bu fg er sharing in programmable
play

FAB: Towards Flow-aware Bu fg er Sharing in Programmable Switches - PowerPoint PPT Presentation

FAB: Towards Flow-aware Bu fg er Sharing in Programmable Switches Maria Apostolaki Joint work with Laurent Vanbever & Manya Ghobadi An old story An old story Fan-in causing queue built-up Switch Senders Receivers An


  1. FAB: Towards Flow-aware Bu fg er Sharing in Programmable Switches Maria Apostolaki Joint work with Laurent Vanbever & Manya Ghobadi

  2. An old story…

  3. An old story… Fan-in causing queue built-up … Switch … Senders Receivers

  4. An old story… Fan-in causing drops Drops … Switch … Senders Receivers

  5. An old story… Drops increase Flow Completion Times Drops … Switch … High SLA Drops tail FCT violations

  6. An old story… Multiple approaches to address this issue Active Queue Management Drops … TCP Version Switch Scheduling …

  7. An old story… Multiple approaches to address this issue Active Queue Management Drops … TCP Version Switch Scheduling …

  8. An old story… Multiple approaches to address this issue Active Queue Management Drops … TCP Version Switch Scheduling …

  9. An old story… Multiple approaches to address this issue Active Queue Management Drops … TCP Version Switch Scheduling …

  10. Bu fg er management : the algorithm according to which ports/queues of a device share a common bu fg er

  11. Bu fg er management : the algorithm according to which ports/queues of a device share a common bu fg er Most of today’s devices have a shared bu fg er to absorb bursts

  12. How many packets can each port store in the common bu fg er? … Switch …

  13. How many packets can each port store in the common bu fg er? remaining excessive packets will be dropped … Switch …

  14. How many packets can each port store in the common bu fg er? remaining excessive packets will be dropped … Switch Let’s give… … …half of the bu fg er to each port! …small fraction to each port!

  15. FAB: Towards Flow-aware Bu fg er Sharing in Programmable Switches Joint work with Laurent Vanbever & Manya Ghobadi

  16. Outline Background FAB Initial Results Practicality

  17. Outline Background FAB Initial Results Practicality

  18. Three common bu fg er management techniques with pros & cons Complete Partitioning: works for balanced tra ffj c wastes bu fg er otherwise statically allocated bu fg er space per port Complete Sharing: works for unbalanced tra ffj c benefits long flows unrestricted bu fg er space per port Dynamic Sharing: adapts fairly to load fraction ( α ) of remaining bu fg er per port ignores queue content

  19. Three common bu fg er management techniques with pros & cons Complete Partitioning: works for balanced tra ffj c wastes bu fg er otherwise statically allocated bu fg er space per port Complete Sharing: works for unbalanced tra ffj c benefits long flows unrestricted bu fg er space per port Dynamic Sharing: adapts fairly to load fraction ( α ) of remaining bu fg er per port ignores queue content

  20. Three common bu fg er management techniques with pros & cons Complete Partitioning: works for balanced tra ffj c wastes bu fg er otherwise statically allocated bu fg er space per port Complete Sharing: works for unbalanced tra ffj c benefits long flows unrestricted bu fg er space per port Dynamic Sharing: adapts fairly to load fraction ( α ) of remaining bu fg er per port ignores queue content

  21. Three common bu fg er management techniques with pros & cons Complete Partitioning: works for balanced tra ffj c wastes bu fg er otherwise statically allocated bu fg er space per port Complete Sharing: works for unbalanced tra ffj c benefits long flows unrestricted bu fg er space per port Dynamic Sharing: adapts fairly to load fraction ( α ) of remaining bu fg er per port ignores queue content

  22. Back to our story… Simulation Results … Switch … Senders Receivers

  23. Simulation Results Shared bu fg er can host up to 180 packets 180 packets … Switch … Senders Receivers

  24. Simulation Results Long flows will consume as much bu fg er as there is available 180 Long Flows # pkts bu fg ered 135 90 … 45 port 1 0 Switch 0 0.4 0.8 1.2 Time (sec) … Senders Receivers

  25. Short flows will attempt to instantaneously store Simulation Results at most 75 packets in the shared bu fg er 180 Long Flows # pkts bu fg ered 135 90 … 45 port 1 0 Switch 0 0.4 0.8 1.2 Time (sec) port 2 Short Flows 80 # pkts bu fg ered 60 40 … 20 0 0 0.4 0.8 1.2 Time (sec) Senders Receivers

  26. Three common bu fg er management techniques with pros & cons Complete Partitioning: works for balanced tra ffj c wastes bu fg er otherwise statically allocated bu fg er space per port Complete Sharing: works for unbalanced tra ffj c benefits long flows unrestricted bu fg er space per port Dynamic Sharing: adapts fairly to load fraction ( α ) of remaining bu fg er per port ignores queue content

  27. Complete Partitioning: static bu fg er space per port = 10 packets 100 100 80 80 # Pkts in Buffer # Pkts in Bu � er # Pkts in Bu � er 60 60 40 40 20 20 0 0 2x10 8 2x10 8 4x10 8 4x10 8 6x10 8 6x10 8 8x10 8 8x10 8 1x10 9 1x10 9 1.2x10 9 1.2x10 9 0.2 0.4 0.6 0.6 0.8 1 Time (s) 0 0 Time (ns) Time (ns)

  28. Receiver of long flows bu fg ers up to 10 packets 100 100 80 80 # Pkts in Buffer # Pkts in Bu � er # Pkts in Bu � er 60 60 40 40 20 20 0 0 2x10 8 2x10 8 4x10 8 4x10 8 6x10 8 6x10 8 8x10 8 8x10 8 1x10 9 1x10 9 1.2x10 9 1.2x10 9 0.2 0.4 0.6 0.6 0.8 1 Time (s) 0 0 Time (ns) Time (ns)

  29. Receiver of long flows bu fg ers up to 10 packets 100 80 # Pkts in Buffer # Pkts in Bu � er 60 40 20 0 2x10 8 4x10 8 6x10 8 8x10 8 1x10 9 1.2x10 9 0.2 0.4 0.6 0.8 1 Time (s) 0 Time (ns)

  30. Receiver of long flows bu fg ers up to 10 packets used by 5% port 1 100 Unused 95% 80 # Pkts in Buffer # Pkts in Bu � er 60 40 20 0 2x10 8 4x10 8 6x10 8 8x10 8 1x10 9 1.2x10 9 0.2 0.4 0.6 0.8 1 Time (s) 0 Time (ns)

  31. Receiver of short flows bu fg ers up to 10 packets 100 80 # Pkts in Buffer # Pkts in Bu � er 60 40 20 0 2x10 8 4x10 8 6x10 8 8x10 8 1x10 9 1.2x10 9 0.2 0.4 0.6 0.8 1 Time (s) 0 Time (ns)

  32. Receiver of short flows bu fg ers up to 10 packets 100 100 80 80 # Pkts in Buffer # Pkts in Bu � er # Pkts in Bu � er 60 60 40 40 20 20 0 0 2x10 8 2x10 8 4x10 8 4x10 8 6x10 8 6x10 8 8x10 8 8x10 8 1x10 9 1x10 9 1.2x10 9 1.2x10 9 0.2 0.4 0.6 0.8 1 Time (s) 0 0 Time (ns) Time (ns)

  33. Bu fg er is 90% empty used by 5% 5% port 2 100 100 Unused 90% 80 80 # Pkts in Buffer # Pkts in Bu � er # Pkts in Bu � er 60 60 40 40 20 20 0 0 2x10 8 2x10 8 4x10 8 4x10 8 6x10 8 6x10 8 8x10 8 8x10 8 1x10 9 1x10 9 1.2x10 9 1.2x10 9 0.2 0.4 0.6 0.8 1 Time (s) 0 0 Time (ns) Time (ns)

  34. Bu fg er is 90% empty, yet the burst is not absorbed 5% 5% 100 90% 80 Burst Size # Pkts in Buffer # Pkts in Bu � er 60 40 20 0 2x10 8 4x10 8 6x10 8 8x10 8 1x10 9 1.2x10 9 0.2 0.4 0.6 0.8 1 Time (s) 0 Time (ns)

  35. Three common bu fg er management techniques with pros & cons Complete Partitioning: works for balanced tra ffj c wastes bu fg er otherwise statically allocated bu fg er space per port Complete Sharing: works for unbalanced tra ffj c benefits long flows unrestricted bu fg er space per port Dynamic Sharing: adapts fairly to load fraction ( α ) of remaining bu fg er per port ignores queue content

  36. Three common bu fg er management techniques with pros & cons Complete Partitioning: works for balanced tra ffj c wastes bu fg er otherwise statically allocated bu fg er space per port Complete Sharing: works for unbalanced tra ffj c benefits long flows unrestricted bu fg er space per port Dynamic Sharing: adapts fairly to load fraction ( α ) of remaining bu fg er per port ignores queue content

  37. Complete Sharing: unrestricted bu fg er space per port 200 180 160 # Pkts in Buffer 140 # Pkts in Bu � er 120 100 80 60 40 20 0 2x10 8 0.2 4x10 8 0.4 6x10 8 0.6 8x10 8 0.8 1x10 9 1 1.2x10 9 Time (s) 0 Time (ns)

  38. Long flows use all bu fg er 200 180 160 # Pkts in Buffer 140 # Pkts in Bu � er 120 100 80 60 40 20 0 2x10 8 0.2 4x10 8 0.4 6x10 8 0.6 8x10 8 0.8 1x10 9 1 1.2x10 9 Time (s) 0 Time (ns)

  39. Long flows use all bu fg er 200 200 180 180 160 160 # Pkts in Buffer 140 140 # Pkts in Bu � er # Pkts in Bu � er 120 120 100 100 80 80 60 60 40 40 20 20 0 0 2x10 8 2x10 8 0.2 4x10 8 4x10 8 0.4 6x10 8 6x10 8 0.6 8x10 8 8x10 8 0.8 1x10 9 1x10 9 1 1.2x10 9 1.2x10 9 Time (s) 0 0 Time (ns) Time (ns)

  40. Long flows use all bu fg er 200 200 180 180 100% 160 160 # Pkts in Buffer 140 140 # Pkts in Bu � er # Pkts in Bu � er 120 120 100 100 80 80 60 60 40 40 20 20 0 0 2x10 8 2x10 8 0.2 4x10 8 4x10 8 0.4 6x10 8 6x10 8 0.6 8x10 8 8x10 8 0.8 1x10 9 1x10 9 1 1.2x10 9 1.2x10 9 Time (s) 0 0 Time (ns) Time (ns)

  41. Upon arrival, the burst finds the bu fg er fully occupied 200 200 180 180 160 160 # Pkts in Buffer 140 140 # Pkts in Bu � er # Pkts in Bu � er 120 120 100 100 80 80 60 60 40 40 20 20 0 0 2x10 8 2x10 8 0.2 4x10 8 4x10 8 0.4 6x10 8 6x10 8 0.6 8x10 8 8x10 8 0.8 1x10 9 1x10 9 1 1.2x10 9 1.2x10 9 Time (s) 0 0 Time (ns) Time (ns)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend