exploring the qcd phase diagram with imaginary chemical
play

Exploring the QCD Phase diagram with imaginary chemical potential - PowerPoint PPT Presentation

Universitt Bielefeld Exploring the QCD Phase diagram with imaginary chemical potential with HISQ action Jishnu Goswami Collaborators: Frithjof Karsch, Christian Schmidt, and Anirban Lahiri 1 Plan of the talk Introduction Status


  1. Universität Bielefeld Exploring the QCD Phase diagram with imaginary chemical potential with HISQ action Jishnu Goswami Collaborators: Frithjof Karsch, Christian Schmidt, and Anirban Lahiri � 1

  2. Plan of the talk • Introduction • Status on chiral phase transition with HISQ at 𝜈 =0 • Status on chiral phase transition in the RW plane. • Results and discussions. � 2

  3. Introduction Central Question: Nature of the chiral symmetry restoring transition at 𝜈 =0 at the chiral limit?? Does a 1st order chiral symmetry restoring transition exist at 𝜈 =0 below ◆ 2 ✓ µ T a certain critical quark mass (m cri ) ?? N f = phys. point 2 The 1st order region is N f = 3 crossover 1 st 0 ∞ 1 st = 1 Z (2) Z (2) expected to be largest in the N f RW plane( 𝜈 /T=(2k+1) 𝜌 /3 ). Thus critical mass in the RW tric 1 st tr. ◆ 2 ✓ π plane puts a bound on the 2 nd 3d Ising ∞ − 1 st tr. tric 3 critical mass at 𝜈 =0. m u,d m s Possible scenario of extended 3d Columbia plot O. Philipsen and C. Pinke. Phys. Rev. D93, 114507, 2016. � 3

  4. Chiral transition for zero chemical potential with HISQ • HotQCD results on chiral phase transition, [ ] μ = 0 N f =3 : 1st order phase N f =2+1 : No hint of 1st order transition ruled out for phase transition for m 𝜌 >55 MeV. 230 MeV > m 𝜌 > 80 MeV. chiral transition is most likely Bound on critical pion 2nd order O(N) rather than Z(2). mass is given as, A. Lahiri et. al. , QM 2018, arXiv:1807.05727 m 𝜌 cr ≲ 50 MeV from the Pure chiral limit N f = 2 N f = 2 scaling analysis. Gauge 1 st U (2) L ⊗ U (2) R / U (2) V ? Bazavov et. al. PRD 95, 074505 (2017) O (4) ? N f = 3 Z(2) phys. point m tric s crossover N f = 1 m s Z ( 2 ) 1 st m ud � 4

  5. Studies in the RW plane Possible scenario of RW end point Mostly with unimproved actions —plenary by S. Mukherjee m 𝜌 ﹥ 1 GeV, for the ‘heavy quark mass RW transition’ ‘small quark mass RW transition’ ( N f = 2) Standard staggered action: m 𝜌 ~ 400 MeV (N 𝝊 =4) Standard Wilson action : m 𝜌 ~ 930 MeV( N 𝝊 =4) m 𝜌 ~ 680 MeV (N 𝝊 =6) 1st order end point (of the line of 1st order RW transitions) exist already for 𝜈 /T= 𝜌 /3 and m cri >m phy. The results are strongly fermion discretization scheme and cut-o ff (N 𝝊 ) dependent. P . de Forcrand et. al, PRL 105, 152001(2010), Owe Philipsen et. al, PRD 89, 094504(2014), Christopher Czaban et al, PRD 93, 054507 (2016) � 5

  6. Studies in the RW plane Very recent studies with improved actions , • Stout improved staggered fermions( N f =2+1): At the physical quark mass point( m 𝜌 ~ 135 MeV) a 2nd order transition in the 3d-Ising universality class happens instead of a 1st order at the RW endpoint. C. Bonati et. al,PRD 93, 074504 (2016) No 1st order end point (of the line of 1st order RW transitions) for m 𝜌 >50 MeV . C. Bonati et. al,arXiv:1807.02106 [hep-lat] • HISQ( N f =2): Order of the phase transition at physical point is not clear(large cut-o ff e ff ects) . L.K.Wu, et al. PRD 97,114514(2018) � 6

  7. Studies with HISQ in the RW plane Z ( T , μ ) = ∫ [ 𝒠 U ] det [ M ud ( μ f )] 1/2 det [ M s ( μ f )] 1/4 exp[ − S G ] Action, M q = D HISQ ( μ f ) + m q Simulation details, N f = 2 + 1, μ T = π m π m l 3 N σ N τ We vary 𝛾 in the range [5.850-6.038], m s (MeV) corresponds to, ∼ T c ± 0.1 T c 8 4 1/27 135 Generally we generated 20k trajectory per 𝛾 value away 12 4 1/27 135 from 𝛾 c and 80k trajectory near 𝛾 c 1/27,1/40, 135, 110, 16 4 1/60 90 We work on the 2nd RW plane 135, 24 4 1/27,1/40 110 � 7

  8. <latexit sha1_base64="gRtvq7rDWgrqzr8hjBTQJw8TnZQ=">ACv3icdVFNj9MwEHXC1xK+Chy5WFQgDkvlGq7SAta4AISh0Wi3ZXqKnLcSWrVcYLtrAjZ8CM5IPFvcJogPlRGsvzmzXua8TgupDCWkB+ef+nylavX9q4HN27eun1ncPfe3OSl5jDjucz1WcwMSKFgZoWVcFZoYFks4TevGnrp+egjcjVR1sVsMxYqkQiOLOigbfqRZVK+pzTFpcJfN24wKldiqoZKpVAJ+l319j6nuEgqfSnG+Q417+Urv+jlL3BAY0iFqrmb1DQBdkH2H2Nq4bOtRYKdLwbL8NH2ijilW01XV7l6+gV03uzjHZaXvy0U1KpvEQ2GZPT8GA8OcBkRMg0HIctGE8nzyY4dEwbQ9THST4Rlc5LzNQlktmzCIkhV3WTFvBJTQBLQ0UjG9YCgsHFcvALOvt/hv8yDErnOTaHWXxlv3TUbPMmCqLnTJjdm3+rbXkrtqitMnhshaqKC0o3jVKSondwtvPxCuhgVtZOcC4Fm5WzNdM27dlwduCb9eiv8P5uNRSEbh8nw+HW/j30AD1ET1CIpugYvUnaIa4d+TF3saT/is/9ZVfdFLf6z30V/hVz8BCrPZDg=</latexit> <latexit sha1_base64="gRtvq7rDWgrqzr8hjBTQJw8TnZQ=">ACv3icdVFNj9MwEHXC1xK+Chy5WFQgDkvlGq7SAta4AISh0Wi3ZXqKnLcSWrVcYLtrAjZ8CM5IPFvcJogPlRGsvzmzXua8TgupDCWkB+ef+nylavX9q4HN27eun1ncPfe3OSl5jDjucz1WcwMSKFgZoWVcFZoYFks4TevGnrp+egjcjVR1sVsMxYqkQiOLOigbfqRZVK+pzTFpcJfN24wKldiqoZKpVAJ+l319j6nuEgqfSnG+Q417+Urv+jlL3BAY0iFqrmb1DQBdkH2H2Nq4bOtRYKdLwbL8NH2ijilW01XV7l6+gV03uzjHZaXvy0U1KpvEQ2GZPT8GA8OcBkRMg0HIctGE8nzyY4dEwbQ9THST4Rlc5LzNQlktmzCIkhV3WTFvBJTQBLQ0UjG9YCgsHFcvALOvt/hv8yDErnOTaHWXxlv3TUbPMmCqLnTJjdm3+rbXkrtqitMnhshaqKC0o3jVKSondwtvPxCuhgVtZOcC4Fm5WzNdM27dlwduCb9eiv8P5uNRSEbh8nw+HW/j30AD1ET1CIpugYvUnaIa4d+TF3saT/is/9ZVfdFLf6z30V/hVz8BCrPZDg=</latexit> <latexit sha1_base64="gRtvq7rDWgrqzr8hjBTQJw8TnZQ=">ACv3icdVFNj9MwEHXC1xK+Chy5WFQgDkvlGq7SAta4AISh0Wi3ZXqKnLcSWrVcYLtrAjZ8CM5IPFvcJogPlRGsvzmzXua8TgupDCWkB+ef+nylavX9q4HN27eun1ncPfe3OSl5jDjucz1WcwMSKFgZoWVcFZoYFks4TevGnrp+egjcjVR1sVsMxYqkQiOLOigbfqRZVK+pzTFpcJfN24wKldiqoZKpVAJ+l319j6nuEgqfSnG+Q417+Urv+jlL3BAY0iFqrmb1DQBdkH2H2Nq4bOtRYKdLwbL8NH2ijilW01XV7l6+gV03uzjHZaXvy0U1KpvEQ2GZPT8GA8OcBkRMg0HIctGE8nzyY4dEwbQ9THST4Rlc5LzNQlktmzCIkhV3WTFvBJTQBLQ0UjG9YCgsHFcvALOvt/hv8yDErnOTaHWXxlv3TUbPMmCqLnTJjdm3+rbXkrtqitMnhshaqKC0o3jVKSondwtvPxCuhgVtZOcC4Fm5WzNdM27dlwduCb9eiv8P5uNRSEbh8nw+HW/j30AD1ET1CIpugYvUnaIa4d+TF3saT/is/9ZVfdFLf6z30V/hVz8BCrPZDg=</latexit> <latexit sha1_base64="gRtvq7rDWgrqzr8hjBTQJw8TnZQ=">ACv3icdVFNj9MwEHXC1xK+Chy5WFQgDkvlGq7SAta4AISh0Wi3ZXqKnLcSWrVcYLtrAjZ8CM5IPFvcJogPlRGsvzmzXua8TgupDCWkB+ef+nylavX9q4HN27eun1ncPfe3OSl5jDjucz1WcwMSKFgZoWVcFZoYFks4TevGnrp+egjcjVR1sVsMxYqkQiOLOigbfqRZVK+pzTFpcJfN24wKldiqoZKpVAJ+l319j6nuEgqfSnG+Q417+Urv+jlL3BAY0iFqrmb1DQBdkH2H2Nq4bOtRYKdLwbL8NH2ijilW01XV7l6+gV03uzjHZaXvy0U1KpvEQ2GZPT8GA8OcBkRMg0HIctGE8nzyY4dEwbQ9THST4Rlc5LzNQlktmzCIkhV3WTFvBJTQBLQ0UjG9YCgsHFcvALOvt/hv8yDErnOTaHWXxlv3TUbPMmCqLnTJjdm3+rbXkrtqitMnhshaqKC0o3jVKSondwtvPxCuhgVtZOcC4Fm5WzNdM27dlwduCb9eiv8P5uNRSEbh8nw+HW/j30AD1ET1CIpugYvUnaIa4d+TF3saT/is/9ZVfdFLf6z30V/hVz8BCrPZDg=</latexit> Ising endpoint of a first order line E ff ective Ising Hamiltonian which H eff ( t , ξ ) = t ℰ + h ℳ defines the universal critical behaviour of the system temperature like under Z(2) transformation, magnetization field like operator ℰ → ℰ energy like (order parameter) operator ℳ → − ℳ magnetic field like Corresponding critical behaviour of QCD in 2nd RW plane [Z(2) transformation], order parameter Im L → − Im L Re L → Re L energy like μ = μ RW i.e. at ( 0 , if β < β c V →∞ h Im L i ⌘ lim V →∞ h | Im L | i = h → 0 lim lim non-zero , if β > β c � 8

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend