experimental methods in transport physics
play

Experimental Methods in Transport Physics Prof. Carlo Requio da - PowerPoint PPT Presentation

Experimental Methods in Transport Physics Prof. Carlo Requio da Cunha, Ph.D. unit: Coherent Transport Coherent Transport P. Drude (1900): N = 1 t 1 N t 2 t i t N i d p P dt = F l mfp A. Sommerfeld


  1. Experimental Methods in Transport Physics Prof. Carlo Requião da Cunha, Ph.D. unit: Coherent Transport

  2. Coherent Transport P. Drude (1900): N ⟨ τ⟩= 1 t 1 N ∑ t 2 t i t N i ⃗ d ⟨ ⃗ p ⟩ P dt =⃗ F − τ l mfp A. Sommerfeld (1927): = √ 1 2 E F f ( E )= ⃗ | v | − E −μ F f m k B T + 1 e l mfp = v ⟨ τ⟩ 1 E/E F

  3. τ v F l mfp Cu: 2.7 x 10 -14 s, 1.57 x 10 8 cm/s → ~42 nm Al: 0.8 x 10 -14 s, 2.03 x 10 8 cm/s → ~16 nm Si: 1.1 x 10 -12 s, 1.1 x 10 7 cm/s → ~120 nm Good 2DEG: 1 x 10 -10 s, 3 x 10 7 cm/s → ~30 um Phase relaxation elastic e iΦ e iΦ Si: ~40 nm e iξ Good 2DEG: ~200 nm inelastic L < L φ

  4. Schrödinger 2 ∇ 2 2 2 H =−ℏ 2 m →− ℏ d ϕ ⟩ =ε | ϕ ⟩ H | AlGaAs GaAs GaAs 2 2 m dx Finite differences E C df ( x ) dx ≈ f [ n + 1 / 2 ]− f [ n − 1 / 2 ] Δ x 2 f ( x ) d ≈ f [ n + 1 ]− 2 f [ n ]+ f [ n − 1 ] 2 2 dx Δ x E v 2 ℏ H ≈− 2 f [ n + 1 ]− 2 f [ n ]+ f [ n − 1 ] 2 qm Δ x t

  5. 2 ϕ ( x ) | | clear; N = 50; hbar = 6.62606957E-34; % [J.s] m = 9.10938215E-31; % [kg] delta = 1E-9; % [m] q = 1.602176565E-19; % [C] t = -hbar^2/(2*q*m*delta^2); H = -2*t*eye(N) + diag(ones(N-1,1),1) + diag(ones(N- 1,1),-1); [ve va] = eig(H); va = diag(va); E1 = va(1); E2 = va(2); x E3 = va(3); p1 = abs(ve(:,1)).^2; p2 = abs(ve(:,2)).^2; p3 = abs(ve(:,3)).^2; x = linspace((-N/2),(N/2),N); plot(x,E1+p1,'r',x,E2+p2,'g',x,E3+p3,'b');

  6. Magnetic Field q ⃗ 2 H =( i ℏ ∇+ A ) GaAs + U ( z ) 2 m AlGaAs B =∇×⃗ ⃗ A z = | A z | A y | ^ ^ ^ ^ ^ x y z x y GaAs = ( ∂ z ) ∂ A z ∂ y −∂ A y ∂ ∂ ∂ ∂ ∂ ⃗ B ^ ∂ x ∂ y ∂ z ∂ x ∂ y A x A y A x z = ( ∂ z ) ^ x + ( ∂ x ) ^ y + ( ∂ y ) ^ ∂ A z ∂ y −∂ A y ∂ A x ∂ z −∂ A z ∂ A y ∂ x −∂ A x B ^ z ⃗ B ^ z ^ z y ^ ⃗ A =− By ^ x ^ x 2 m [ ( i ℏ ∂ z ] 2 H = 1 ∂ x − qBy ) ^ x + ( i ℏ ∂ ∂ y ) ^ y + ( i ℏ ∂ ∂ z ) ^ + U ( z )

  7. 2 m [ ( i ℏ ∂ z ] 2 H = 1 GaAs ∂ x − qBy ) ^ x + ( i ℏ ∂ ∂ y ) ^ y + ( i ℏ ∂ ∂ z ) ^ + U ( z ) U ( z ) ] + 1 2 2 m ( i ℏ ∂ ∂ x − qBy ) H = [ H yz + GaAs ik x x ϕ(⃗ r )=ϕ 0 χ yz e B ^ z U ( z ) ] χ yz + 1 [ H yz + 2 χ yz =εχ yz ^ z 2 m ( ℏ k x + q B y ) ^ y ( q B + y ) 2 2 ( m ) 2 ℏ k x ^ x U ( z ) ] χ yz + m q B [ H yz + χ yz =εχ yz U ( z ) ] χ yz + 1 [ H yz + 2 ( y k + y ) 2 χ yz =εχ yz 2 m ω c ω c = qB m

  8. y k =ℏ k x U ( z ) ] χ yz + 1 [ H yz + 2 ( y k + y ) 2 χ yz =εχ yz 2 m ω c q B χ yz =ψ( y )θ( z ) ε yz =ε y +ε z [ H y 2 ] ψ( y )=ε y ψ ( y ) 0 + 1 2 ( y k + y ) 2 m ω c [ H z 0 + U ( z ) ] θ( z )=ε z θ( z ) This was already solved! B ^ z ^ z ^ y E C x ^ E 3 Let us suppose E F such E 2 that there is only E F one subband occupied. E 1 E v

  9. [ H y 2 ] ψ( y )=ε y ψ ( y ) 0 + 1 2 ( y k + y ) 2 m ω c Parabolic confinement! ε y =( n + 1 / 2 )ℏω c ε=ε 1 + ( n + 1 / 2 ) ℏω c ε z =ε 1 Independent of k x ! E No group velocity! Circular orbits! ∂ E 1 = 0 ℏ ∂ k x k x

  10. y k =ℏ k x Δ y k = ℏΔ k x q B q B L Born von-Karman W k x = v ⋅ 2 π ik x ( x + L ) = e ik x x ik x L = 1 e e L 2 π spin B ^ z L ^ z Δ y k = ℏ 2 π N = W = 2 W q L B ^ y Total number ^ x q LB of levels: Δ y k ℏ 2 π n = q B ℏ π

  11. Shubnikov – de Haas n Landau = n s B = 2 T n = q B = 5.2 n s = 5 x 10 11 cm -2 q B ℏ π ℏ π E n s n s − = 1 E F q B i qB i + 1 ℏ π ℏ π k x ( h ) ( B i + s ) = s n s 1 − 1 B ^ z 2 q B i 3 ^ y 2 x ^ 1 1 B L. Shubnikov and W. de Haas, Leiden Comm. 207a (1930) 3.

  12. Real Data index B 1/B 1 6 2.44 0.41 2 3 4 5 3 0.33 5 4 3.71 0.27 3 4.12 0.24 2 4.78 0.21 i 1 5.16 0.19 ( h ) ( B i + s ) = s n s 1 − 1 2 q B i n s = 1.06 x 10 12 cm -2 1/B

  13. Multiple Subbands E C E 3 E F E 2 E 1 E v N. Aoki, C. R. da Cunha, R. Akis, D. K. Ferry and Y. Ochiai, J. Phys.: Condens. Matter 26 (2014) 193202. n -In 0.53 Al 0.47 As (5 nm - cap) n -In 0.53 Al 0.47 As (30 nm - doping) i -In 0.53 Al 0.47 As (10 nm - spacer) i -In 0.53 Ga 0.47 As (25 nm - QW) i -In 0.53 Al 0.47 As (10 nm - spacer) InP Substrate

  14. T. Ando, A. Fowler and F. Stern, Rev. Mod. Phys. 54 (1982) 437. Mobility Factor ω c = qB l a m g r n e * h i p m T m a D = D ( T , ω c )⋅ M (ω c )⋅ cos ( ℏ ω c ⋅ g s ⋅ g v ) Δρ xx ( T , ω c ) 2 π E F ρ 0 Spin & Valley Degeneracies − π ω c τ M (ω c )= e D ( T , ω c )= X ( T )⋅ csch ( X [ T ]) 2 k B T X ( T )= 2 π ℏ ω c

  15. Effective Mass ⋅ csch ( ℏ ω c ) ⋅ M (ω c )⋅ C (ω c ) 2 k B T 2 k B T Δρ xx ( T , ω c ) = 2 π 2 π ω c = qB ρ 0 ℏω c * m ( B ) ( B ) 1 1 1 K 0.5 K ≈ 1 2 k B T − 2 π Δρ xx ℏ ω c ρ 0 T ≈ C ⋅ e 2 k B log ( Δρ xx ρ 0 T ) ≈ C − 2 π T ( B ) ( B ) 1 1 ℏω c 0.1 K 0.3 K 2 k B m * ( B ) T log ( Δρ xx ρ 0 T ) ≈ C − 2 π 1 ℏ q P. T. Coleridge, M. Hayne, P. Zawadzki and A. S. Sachrajda, Surf. Sci. 361/362 (1996) 560.

  16. 2 k B m * 2 k B m * log ( ρ 0 T ) ≈ C − 2 π ( B ) T slope =− 2 π ( B ) Δρ xx 1 1 ℏ q ℏ q ℏ q m ef (calc.) = 1.07, m ef (exact) = 1.00 * =− m slope 2 k B m 0 ( 1 / B ) 2 π T = [1 0.5 0.3 0.1 0.05]; A = [0.0053 0.1375 0.41 0.81 0.88]; lA = log(A./T); S = cov(T,lA)/var(T); m_eff = -S*hbar*q/(2*pi^2*0.53*mass*kB) semilogy(T,A./T,'*'); grid on; xlabel('Temperature [K]'); ylabel('Ln A/T');

  17. Electron Density: 2DEG spin 2 2 ε F = ℏ 2 k F 2 N = 2 π k F n = k F ( L ) 2 π 2 2 m * 2 π k F n = m ε F π ℏ 2 2 π 2 ε F = πℏ L * n m Density of States: g (ε)= ∂ n (ε) n (ε)= m ε = m Independent of ε!! ∂ε πℏ 2 π ℏ 2

  18. = D ( T , ω c )⋅ M (ω c )⋅ cos ( ℏ ω c ⋅ g s ⋅ g v ) Δρ xx ( T , ω c ) 2 π E F 2 ε F = πℏ ω c = qB * n ρ 0 * m m NFFT = 128; x_axis = linspace(min(1./B),max(1./B),L); y_axis = interp1(1./B,sxx,x_axis); fs = 1/(x_axis(2)-x_axis(1)); z = fft(y_axis,NFFT); z = z.*conj(z)/(NFFT*L); z = abs(z(1:NFFT/2)); x = fs*(0:(NFFT/2-1))/NFFT; [m im] = max(z); n (comp.) = 1.90 x 10 15 cm -2 wo = 2*pi*x(im) n (exact.) = 2.00 x 10 15 cm -2 n = (g_s*g_v*q/(2*pi^2*hbar))*wo plot(x,z); grid on; xlabel('Frequency [T]'); ylabel('FFT Power');

  19. Mobility ω c = qB * m Δρ xx ( T , ω c ) − π τ ω c ⋅ C (ω c ) log ( ρ 0 D ( T , ω c ) ) = C − π = D ( T , ω c )⋅ e Δρ xx ( T , ω c ) * τω c =−π m 1 ρ 0 τ q B DINGLE PLOT wc = q*B/(mass*m_eff); X = 2*(pi^2)*kB*T./(hbar*wc); D = X.*csch(X); oB = [0.536 0.574 0.613 0.652 0.690]; m = [0.437 0.401 0.378 0.357 0.337]; lm = log(m); S = cov(oB,lm)/var(oB); tau = -pi*mass*m_eff/(q*S) Gamma = hbar/(2*tau*q) τ(calc.) = 1.16 x 10 -11 TD = Gamma / (pi*kB) τ(exac.) = 1.00 x 10 -11 semilogy(1./B,abs(sxx)./D); grid on; xlabel('1/B [T^{-1}]'); ylabel('log |\delta\rho_{xx}|');

  20. Example: Graphene Z. Tan, C. Tan. L. Ma, G. T. Liu and C. L. Yang, Phys. Rev. B 84 (2011) 115429. μ > 8.000 cm² / V.s

  21. What is happening? [ H y 2 ] ψ( y )=ε y ψ ( y ) y k =ℏ k x 0 + 1 2 ( y k + y ) 2 m ω c q B E E F k x Suppression of backscattering!

  22. Quantum Hall Effect equilibrium ∂ε k I = q f (ε[ k ]) v = q f (ε[ k ]) 1 L ∑ L ∑ ℏ ∂ k k k spin ∞ dk f (ε) ∂ε k I = 2 × L 1 q L ∫ μ L μ R 2 π ℏ ∂ k −∞ μ L for M modes. I = 2 q h ∫ d ε M (ε) f (ε) μ R equilibrium 2 (μ L −μ R ) I = 2 q M M 3 h q 2 1 K. v. Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45 (1980) 494. ε 1 ε 2 ε 3 ε

  23. Example: Graphene Y. Zhang, Y.-W. Tan, H. L. Stormer and P. Kim, Nature 438 (2005) 201.

  24. Scanning Gate N. Aoki, C. R. da Cunha, R. Akis, D. K. Ferry and Y. Ochiai, J. Phys.: Condens. Matter 26 (2014) 193202.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend