experimental methods in transport physics
play

Experimental Methods in Transport Physics Prof. Carlo Requio da - PowerPoint PPT Presentation

Experimental Methods in Transport Physics Prof. Carlo Requio da Cunha, Ph.D. unit: Resistivity Transmission Line Method W. Shockley (1964) G. K. Reeves and H. B. Harrison, IEEE Elec. Dev. Let. 3 (1982) 111. d 1 d 2 d 3 d 1 d 2 r W L


  1. Experimental Methods in Transport Physics Prof. Carlo Requião da Cunha, Ph.D. unit: Resistivity

  2. Transmission Line Method W. Shockley (1964) → G. K. Reeves and H. B. Harrison, IEEE Elec. Dev. Let. 3 (1982) 111. d 1 d 2 d 3 d 1 d 2 r W L Kelvin method V I ij = 2 ⋅ R C + R S d ij / W -I R meas R C R S

  3. R C R S L T = √ ρ c V(x) ρ s I √ ρ c ρ s cosh [ ( L − x )/ L T ] Gives an idea of V ( x )= spreading. Z sinh ( L / L T ) x

  4. d 1 d 2 d 3 W L ij = 2 ⋅ R C + R S d ij / W R meas L T = R C /R S SLOPE = R S /W 2R C -2L T d 1 d 2 d 3

  5. Resistance Measurements Drude (1900): F ⋅Δ)( 1 −Δ I ⃗ P ( t +Δ)=(⃗ P ( t )+⃗ τ ) ⃗ F = q ⃗ v ×⃗ E + q ⃗ B ⃗ B ρ= [ ρ ] ρ − B 0 / nq ~ B 0 / nq ρ= m = 1 / nq μ 2 τ nq

  6. 2-Wire Sensing Hall bar mesa structure 1 4 ρ= V 56 − V 65 ⋅ w ⋅ t w To get better statistics. t I 56 − I 65 L (anisotropy, inhomogeneity, contacts, etc.) 6 5 2 3 L Not Reliable!!! R DUT V I = R DUT + R P 1 + R P 2 R p1 R p2 R Measured = V / I = R DUT + R P 1 + R P 2 I V

  7. 4-wire Sensing R DUT V = I ⋅ R DUT R p1 R p2 R q1 R q2 R Measured = V / I = R DUT Z i → ∞ V ρ L = V 23 − V 32 ⋅ w ⋅ t I I 56 − I 65 a 1 4 ρ U = V 14 − V 41 ⋅ w ⋅ t w t I 56 − I 65 a 6 5 ρ= ρ L +ρ U 2 3 2 a

  8. Magnetoresistivity 1 4 +B − V 32 +B )+( V 23 -B − V 32 -B ) ρ L =( V 23 ⋅ w ⋅ t w t a +B − I 65 +B )+( I 56 -B − I 65 -B ) ( I 56 6 5 2 3 +B − V 41 +B )+( V 14 -B − V 41 -B ) ρ U =( V 14 ⋅ w ⋅ t a a +B − I 65 +B )+( I 56 -B − I 65 -B ) ( I 56 ⃗ B ρ= ρ L +ρ U 2

  9. Hall Coefficient ρ= [ ρ ] ρ − B 0 / nq ~ E y / J x = B 0 / nq 1 4 B 0 / nq w t V 12 6 V 12 / w V 12 R H = t 5 ⋅ = 1 / nq I 56 /( w ⋅ t )= B 0 / nq = B 0 / tnq 2 3 B 0 I 56 I 56 a + B − V 12 + B + V 12 - B − V 21 - B + B − V 43 + B + V 43 - B − V 34 - B R H 2 =( t / B ) V 21 R H 1 =( t / B ) V 34 ⃗ B + B − I 65 + B + I 65 - B − I 56 - B + B − I 65 + B + I 65 - B − I 56 - B I 56 I 56 R H 1 + R H 2 n = 1 / q ⋅ R H μ= 1 / nq ρ ρ= 1 / nq μ R H = 2

  10. Magnetoresistivity ρ= [ ρ ] 2 [ ρ ] ρ − B 0 / nq ρ B 0 / nq 1 ~ ~ σ= 2 + ( B 0 / nq ) B 0 / nq − B 0 / nq ρ nq μ n i q μ i σ xx = ∑ σ xx = 2 1 +( B 0 μ) 2 1 +( B 0 μ i ) i How many different carrier species?! 2 B 0 2 B 0 σ xy = nq μ n i q μ i σ xy = ∑ 2 2 1 +( B 0 μ) 1 +( B 0 μ i ) i

  11. Mobility Spectrum W. A. Beck and J. R. Anderson, J. Appl. Phys. 62 (1987) 541. Conductivity Density ∞ s (μ) σ xx ( B )= ∫ d μ Account for multiple carrier species in 2 1 +( B μ) −∞ multiple bands, layers, dependence of relaxation times and effective masses ∞ d μ s (μ)μ B on wavevector, anisotropies, etc. σ xy ( B )= ∫ 2 1 +( B μ) −∞ PROBLEM: − 1 {σ xx } σ xx = T { s (μ)} s (μ)= T No inverse transform. Have to fit! Original solution mathematically intense!!! Integral Transform!

  12. Mobility Results Thermally excited carriers! J. R. Meyer, C. A. Hofgman, F . J. Bartoli, D. A. Arnold, S. Sivananthan and J. P . Faurie, Semicond. Sci. Technol. 8 (1993) 805.

  13. Quantitative Mobility Spectrum J. Antoszewski and L. Farone, Opto-Electron. Rev. 12 (2004) 347.

  14. Brian' Method D. Chrastina, J. P . Hague and D. R. Leadley, J. Appl. Phys. 94 (2003) 6583.

  15. Restriction ∞ s (μ) σ xx ( B )= ∫ d μ 2 1 +( B μ) −∞ Solution indeterminate! ∞ d μ s (μ)μ B σ xy ( B )= ∫ Similar Problem 2 1 +( B μ) −∞ Implanted channel d 1 /ρ= ∫ 0 σ( z ) dz In order to be an d σ≈μ q ∫ 0 inverse, these have n ( z ) dz to be orthogonal functions!

  16. Van der Pauw L. J. van der Pauw, Phil. Tech. Rev. 20 (1958) 220. I δ r B ⃗ J = 2 I J = ρ I ⃗ V AB =− ∫ A E ⋅⃗ 2 π r δ ^ E =ρ⃗ ⃗ r π r δ ^ r dr B dr V AB =−ρ I V AB =−ρ I πδ ∫ A πδ ln ( B / A ) r

  17. Van der Pauw I M N O P a b c V PO = V PO ( I M )+ V PO (− I N ) δ V AB =−ρ I πδ ln ( a + b ) V PO ( I M )=−ρ I a + b + c πδ ln ( B / A ) πδ ln ( b ) V PO (− I N )=ρ I b + c Case #1: -I I π δ ln ( b + c ) V PO =− ρ I a + b + c b M N O P a + b a b c V- V+ a + b + c b −π R MNOP /ρ s b + c = e a + b

  18. Van der Pauw I M N O P a b c V MP = V MP ( I N )+ V MP (− I O ) δ V AB =−ρ I π δ ln ( a ) V MP ( I N )=ρ I b + c πδ ln ( B / A ) πδ ln ( a + b ) V MP (− I O )=−ρ I c Case #2: I -I πδ ln ( b + c ) V MP =−ρ I c a M N O P a + b a b c V+ V- c a −π R NOPM /ρ s b + c = e a + b

  19. a + b + c b −π R MNOP /ρ s b + c = e a + b −π R MNOP /ρ s + e −π R NOPM /ρ s 1 = e + c a −π R NOPM /ρ s b + c = e Nested intervals! a + b R nopm R mnop Hall I V+ V- V+ -I m p m p m p V+ n n n o o o V- V- -I -I I I

  20. Python Code # Calculate error in guessing a sheet resistance value def erro(val): global Rv, Rh return abs(1 - np.exp(-Rv*np.pi/val) - np.exp(-Rh*np.pi/val)) # Start nested intervals Li = 1E1 La = 1E6 −π R MNOP /ρ s + e −π R NOPM /ρ s 1 = e while La-Li > 1: ma = Li + (La-Li)/4 mb = La - (La-Li)/4 Era = erro(ma) Erb = erro(mb) if Era < Erb: La = (Li+La)/2 elif Erb < Era: Li = (Li+La)/2 Ps = (Li+La)/2

  21. Reciprocity Theorem Problem: Parasitics! e.g. Seebeck effect. V+ V- -I ∆V ∆V I V + -V - = V+∆V V + -V - = V-∆V I V- V+ -I

  22. H. Lorentz (1896) i 2 i 1 = [ Z 22 ] [ [ V 2 ] i 2 ] + + Z 11 Z 12 V 1 i 1 v 1 v 2 Z Z 21 - - V 1 V 1 Z 11 = Z 11 = i 1 i 1 i 2 = 0 i 2 = 0 V 1 V 1 Z 11 = Z 11 = i 1 i 1 i 2 = 0 i 2 = 0

  23. CASE #1: 0 ] = [ Z 21 Z 22 ] [ − i 2 ] [ Z 11 Z 12 V 1 i 1 i -i 2 + Z 11 Z 22 − Z 12 Z 21 [ Z 11 ] [ 0 ] v 1 [ − i 2 ] = 2 Z = Z 11 Z 22 − Z 12 − Z 12 V 1 1 Z 22 V 1 i - i 2 Z 12 − Z 21 CASE #2: V 2 ] = [ Z 22 ] [ i' ] [ Z 11 Z 12 − i 1 0 i' -i 1 Z 21 + Z 11 Z 22 − Z 12 Z 21 [ Z 11 ] [ [ i ] = V 2 ] v 2 2 Z V 1 = Z 11 Z 22 − Z 12 − Z 12 1 Z 22 − i 1 0 - i 2 Z 12 − Z 21 R ABCD = R CDAB

  24. R nopm R pmno -I I V+ V- m p m p 2 ⋅ R H = ( R nopm + R pmno ) n o n o V+ V- -I I R mnop R opmn I I m p m p V+ V+ 2 ⋅ R V = ( R mnop + R opmn ) n n o o V- V- -I -I

  25. V V V V V V V V 4 ⋅ R V 4 ⋅ R H −π R V /ρ s + e −π R H /ρ s = 1 e

  26. 2-Lockin Technique G. T. Kim, J. G. Park, Y . W. Park, C. Müller-Schwanneke, M. Wagenhals and S. Roth, Rev. Sci. Inst. 70 (1999) 2177. 18 Hz V/I 120 Hz V/I

  27. Bipolar Voltage/Current Converter C 10k R I = V/R V 10k OPA404 10k

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend