experimental identification of transfer functions for
play

Experimental identification of transfer functions for diffusive - PowerPoint PPT Presentation

Experimental identification of transfer functions for diffusive and/or advective heat transfer for linear time invariant dynamical systems Denis Maillet U niversity of L orraine & CNRS, Nancy, France U niversity of L orraine & CNRS,


  1. Experimental identification of transfer functions for diffusive and/or advective heat transfer for linear time invariant dynamical systems Denis Maillet U niversity of L orraine & CNRS, Nancy, France U niversity of L orraine & CNRS, Nancy, France L aboratoire d' E nergétique et de M écanique T héorique et A ppliquée (LEMTA) New Trends in Parameter Identification for Mathematical Models IMPA, Rio de Janeiro, Brazil, October 30 – November 3, 2017 Contribution: Waseem Al Hadad

  2. Denis Maillet, Waseem Al Hadad, New trends in parameter identification, IMPA, Rio de Janeiro, Brasil , oct.-nov.20 17 Experimental inverse problems in heat transfer and engineering METTI Group, SFT (French Heat Transfer Society) Recently: interest in convolutive models and associated inverse problems * Pollutant source identification in a ventilated domain (turbulence, transient concentration measurements) * Transient thermal behaviour of heat exchanger (PhD W. Hadad, Fives Cryo postDoc) 2 * Virtual sensor construction in a furnace under vacuum conditions (PhD T. Loussouar, Safran Group)

  3. Scope 1. Forced thermal response of Linear advective/diffusive systems with Time Independent (LTI) coefficients 2. The calibration problem 2.1 Case of a heat exchanger 2.2 Experimental Impedance/transmittance estimation for a half heat exchanger 3. Analysis of deconvolution deadlocks 3.1 Reference case: 1D transient conduction 3.1 Reference case: 1D transient conduction 3.2 Noisy matrix and Total Least Squares 3.3 Comparison of calibration methods 4. Rectangular deconvolution 4.1. Point versus averaged values for input and unknown 4.2 Rectangular deconvolution (using « stairs » parameterizing) 4.3 Rectangular estimation with n < m non uniform (NU) time steps 5. Conclusions/perspectives 3 Denis Maillet, Waseem Al Hadad, New trends in parameter identification, IMPA, Rio de Janeiro, Brasil , oct.-nov.20 17

  4. Denis Maillet, Waseem Al Hadad, New trends in parameter identification, IMPA, Rio de Janeiro, Brasil , oct.-nov.20 17 1. Forced thermal response of an advective/diffusive system with time constant coefficients Material multicomponent system = K solid or fluid domains solid fluid solid - Ω 3 Flowing solid - Ω 1 fluid fluid Ω K - 1 solid - Ω 4 Flowing solid - Ω K fluid Ω 2 solid - Ω K -2 Assumptions: time constant thermophysical properties and velocity field 4

  5. Denis Maillet, Waseem Al Hadad, New trends in parameter identification, IMPA, Rio de Janeiro, Brasil , oct.-nov.20 17 Initial uniform state or steady state temperature field + one single separable thermal excitation ≠ ≠ T ∞ ) ( t T = & in Q ( t ) m c T ( t ) Q ( t ) or T ( t ) T init in in in b s s init h (P) P P s s P s solid - Ω 3 Flowing Q v ( t ) fluid solid - Ω 1 Ω K - 1 solid - Ω 4 Flowing Flowing solid - Ω K fluid Ω 2 solid - Ω K -2 Time part of thermal excitation u ( t ) (starts at time t = 0) : Q v ( t ) • volumetretric heat source Fixed geometrical support : • surface heat or temperature source Q ( t ) or T ( t ) s s • point ≠ • line T ∞ ) ( t T • change of external fluid temperature init • surface • volume 5 T in • change of temperature at one fluid inlet ( t ) b

  6. Change of perspective: one single heterogeneous fluid in one single domain (if solid part : zero velocity) ≠ ≠ T ∞ ) ( t T = & & in Q ( t ) m c T ( t ) Q ( t ) or T ( t ) T init in in in b s s init h (P) P P s s λ thermal conductivi ty : (P) r ρ Q v ( t ) volumetric heat : c (P) velocity field : v (P) P P heat heat transfer transfer coefficien coefficien t t ≡ y ( t ) T (P, t ) (external boundaries ) : h (P) Transient separable thermal excitation : Point response at any point P : ⇒ ≡ y ( t ) T (P, t ) u ( t ) 6 6 Denis Maillet, Waseem Al Hadad, New trends in parameter identification, IMPA, Rio de Janeiro, Brasil , oct.-nov.20 17

  7. Denis Maillet, Waseem Al Hadad, New trends in parameter identification, IMPA, Rio de Janeiro, Brasil , oct.-nov.20 17 Recap: Physical system: Set of solids AND fluid(s): 3D forced convection with constant velocities (in time but not in space) P = ANY point in the system One single thermal excitation defined by its support One single thermal excitation defined by its support Assumptions : Transient heat equation + boundary conditions with time-invariant coefficients + uniform initial temperature or steady state (the system is Linear and also Time-Invariant LITI) ( ) ∂ r r r r ( ) T ( ) Q ( t ) . . ρ + ρ ∇ = ∇ λ ∇ + v c P (P , t ) c P u (P) T (P , t ) (P) T (P , t ) f (P) ∂ t V source Conduction Transient Advection Internal source 7

  8. Temperature rise at any point P: θ = (P , t ) T (P , t ) - T (P) init Its Laplace transform : ∞ ∫ θ = θ (P , p ) exp (- p t ) (P , t ) d t 0 Laplace parameter Assumptions : Transient heat equation + boundary conditions with time-invariant coefficient + uniform initial temperature (the system is Linear and also Time-Invariant LITI) ( ) r r r ∂ r ( ) T ( ) Q ( t ) . . ρ + ρ ∇ = ∇ λ ∇ + v c P (P , t ) c P u (P) T (P , t ) (P) T (P , t ) f (P) ∂ t V source Conduction Transient Advection Internal source Consequences : Laplace transformed heat equation (no time derivative) ( ) r r r r ( ) ( ) Q ( p ) . . ρ θ + ρ ∇ θ = ∇ λ ∇ θ + v c P p (P , p ) c P u (P) (P , p ) (P) (P , p ) f (P) V source Transient Advection Conduction Internal source 8 Denis Maillet, Waseem Al Hadad, New trends in parameter identification, IMPA, Rio de Janeiro, Brasil , oct.-nov.20 17

  9. Linear system with a single excitation Temperature or flux ⇒ response at any point P in the system = simple product (Laplace domain) = y (P, p ) H (P , p ) u ( p ) or convolution product (time domain) excitation ∫ ∫ t = = − y (P , t ) H (P , t ) * u ( t ) H (P, t t ' ) u ( t ' ) d t' response response 0 0 Excitation : u ( t ) Transfer function Response in any specific point P : y ( t ) = − − init init u ( t ) Q ( t ) Q or Q ( t ) Q v v s s = θ = y ( t ) (P, t ) T (P, t ) - T (P) H (P , t ) init or T ( t ) - T (P ) s init s or local heat flux in init or T ( t ) - T ϕ ∞ ∞ « init »= initial steady state any direction (P, t ) x in in , init or uniform temperature field or T ( t ) - T b b 9

  10. t ∫ = = − y (P , t ) H (P , t ) * u ( t ) H (P, t t ' ) u ( t ' ) d t' 0 excitation response y ( t ) u ( t ) ss y ss u H ( t ) t t 0 0 H t 0 0 ∞ ss y ( ) dt ∫ Steady state (ss) version = = ss H H t ss of a transfer function u 0 Time distribution asymptotic values − = Φ T T R case : in out Thermal resistance, flux pipe ≡ − SS u Q or Q Q (thermal power) between 2 isothermal surfaces ≡ θ = − y T T (P) (temperatu re variation) init − = ss ss ⇒ ≡ T T Z Q H Z (thermal impedance) ∞ Generalized resistance, no flux pipe 10 Denis Maillet, Waseem Al Hadad, New trends in parameter identification, IMPA, Rio de Janeiro, Brasil , oct.-nov.20 17

  11. 2. The calibration problem 2.1 Case of a heat exchanger Assumptions : � Constant thermo-physical properties (fluid and walls) and velocities (LTI heat equation) : ∂ β ∂ = β ≡ λ ρ / t 0 u , u , , , .... hot cold � Uniform initial conditions/initial steady state) = ) = ) = = = = = = ss ss T T (P (P , , t t 0 0 T T T T (P (P , , t t 0 0 ) ) T T (P) (P) init init � Heat losses through convection/(linearized) radiation with environment through a uniform = { heat transfer coefficient h at temperature T T ∞ init � One single heat source � Transient/unsteady thermal regime (inlet temperature increase) with observed responses at any point q : ⇒ that starts at t = 0 + : ( ) ( ) θ = − t T t T θ = ≠ q q init ( t ) T ( t ) - T 0 ( ) ( ) 1 1 init θ ≤ = θ > ≠ t 0 0 and t 0 0 q q Cause Consequences θ = = 11 ( t ) T ( t ) - T 0 4 4 init

  12. Calculation of convolution products (transmittance case) Parameterizing with piecewise constant functions, square case response transmittance unique pseudo source θ = θ (P , t ) W (P , t ) * ( t ) 1 ∫ t = − θ W (P, t t ' ) ( t ' ) d t' 1 0 t ∫ = θ − (P, t t ' ) W (P, t ' ) d t ' 1 0 m ∑ θ ≈ θ ∆ = = = = (P , t ) t W (P) ∆ ∆ t 0 ; t i t for i 1 to m ; t t / m i 1 , j − + 0 i final i j 1 j = = j 1 1 sampled averaged over 1 time interval ( ) 1 1 t ∫ = i ≈ + = θ z z ( t ) d t z ( t ) z ( t ) for z ( t ) or W (P) − i i 1 i 1 ∆ t 2 t − i 1 q = 2 , 3 or P θ θ 1 θ θ ( t ) , ( t ) q 1 2 3 q W 1 θ 1 t ( ) Heat exchanger θ P1 t ( ) t t K K t 0 0 t t t t t 1 2 m 2 m 1 12 Denis Maillet, Waseem Al Hadad, New trends in parameter identification, IMPA, Rio de Janeiro, Brasil , oct.-nov.20 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend