existence of algebraic vortex spirals and ill posedness
play

Existence of algebraic vortex spirals and ill-posedness of inviscid - PowerPoint PPT Presentation

Existence of algebraic vortex spirals and ill-posedness of inviscid flow (Part III) Volker Elling S.I.S.S.A. Trieste, June 610, 2011 Birkhoff-Rott for multiple branches m4N1ell.vs Sheets p = 0 , ..., N 1 at equal angles 2 N , N N .


  1. Existence of algebraic vortex spirals and ill-posedness of inviscid flow (Part III) Volker Elling S.I.S.S.A. Trieste, June 6–10, 2011

  2. Birkhoff-Rott for multiple branches m4N1ell.vs Sheets p = 0 , ..., N − 1 at equal angles 2 π N , N ∈ N . z ( γ ) contour for sheet 0 � sheet p is u p z ( γ ) with u = exp 2 πi N . Redefine Γ as circulation for all branches combined ⇒ each individual branch generates Γ N � 1 N − 1 dγ ′ � ∗ � (1 − 2 µ ) γ ∂ 1 ∂γz ( γ )+ µz ( γ ) = W ∗ = � 2 πi p.v. . z ( γ ) − u p z ( γ ′ ) N R p =0 � �� � =: A p * 2

  3. Kaden approximation (Kaden (1931), Rott (1956)): γ = 0 in center; increasing to outside Spiral turns almost circular, with almost uniform d Γ /ds . Γ Inside circle: W = 0. Outside circle: W = 2 πiZ (= point vortex). Approximation of W integral: � � ∗ 1 (1 − 2 µ ) γ ∂ γ ∂γz ( γ ) + µz ( γ ) = 2 πi · . z ( γ ) ODE for z ( γ ). Ansatz: ̺ distance from center, θ angle travelled (= 0 at infinity, → ∞ towards spiral center): z = z k = ̺ ( γ ) exp( iθ ( γ )) . 3

  4. � 1 � ∗ (1 − 2 µ ) γ ∂ γ ∂γz + µγ = , z = ̺ ( γ ) exp( iθ ( γ )) . 2 πi z (1 − 2 µ ) γ ( ∂ ∂γ̺ + i̺ ∂ i γ ∂γθ ) e iθ + µ̺e iθ = ̺e iθ . 2 π (1 − 2 µ ) ∂ γ = ̺ 2 − 1 /µ ∂γ̺ + µ̺ = 0 ⇒ (1 − 2 µ ) ̺ ∂ γ γ = (2 πθ ) 1 − 2 µ ∂γθ = ⇒ 2 π̺ ̺ = (2 πθ ) − µ , z k = (2 πθ ) − µ e iθ . * Algebraic spirals ( µ = 1: hyperbolic). Prandtl (1920s): logarithmic spirals. Exact solutions, easier to con- struct [Saffman, Vortex Dynamics] but seem uncommon. 4

  5. Pseudo-angle Kaden approximation: γ = (2 πθ ) 1 − 2 µ θ = (2 π ) − 1 γ 1 / (1 − 2 µ ) ⇔ More convenient: define pseudo-angle t as * t = t ( γ ) = (2 π ) − 1 γ 1 / (1 − 2 µ ) γ = (2 πt ) 1 − 2 µ ⇔ If Kaden approximation good, can expect t ≈ θ for θ ≈ ∞ . γ, t ∈ (0 , ∞ ); γ ↓ 0 means t ↑ ∞ and vice versa. Advantage: instead of ̺ ( θ ) , γ ( θ ) can use single ( C -valued) z ( t ). Left-hand side: (1 − 2 µ ) γz γ + µz = (1 − 2 µ ) γ ∂ t γz t + µz = tz t + µz New velocity integral: � ∞ � ∞ dγ ′ 1 1 z ( t ) − u p z ( s ) | dγ 1 2 πi p.v. A p z ( γ ) − u p z ( γ ′ ) = 2 πi p.v. A p dt ( s ) | ds 0 0 � ∞ 1 = − i (2 µ − 1)(2 π ) − 2 µ p.v. z ( t ) − u p z ( s ) s − 2 µ ds A p 0 5

  6. Asymptotic series ansatz z ( t ) = z k ( t ) g ( t ) , g ( t ) = 1 + ˜ g ( t ) , z ( t ) = ˜ ˜ g ( t ) z k ( t ) . ˜ g = 0 yields z = z k (Kaden approximation). Idea: try (for example) ∞ � a j t − j g ( t ) = ˜ , a j ∈ C j =1 0 ! = F ( z ) = F 1 ( a 1 ) t − β + F 2 ( a 1 , a 2 ) t − β − 1 + F 3 ( a 1 , a 2 , a 3 ) t − β − 2 + ... Determine a 1 , then a 2 , then a 3 , ... Problem: does not seem to converge [no surprise], not even for t large. 6

  7. Why asymptotic series rarely work: ∞ � a j t − j j =1 1. Series does not converge (coefficients a j grow too fast); 2. If it does, may converge only locally ( t ≈ ∞ ); 3. If it converges, need not converge to a solution; 4. Even if true, any of these is usually very hard to prove. Examples: du dθ + θ − 1 u = 0 u (1) = 1 , works (Frobenius) du u (1) = 1 , dθ + u = 0 fails! (reason 3.) � t ∞ s β e is ds = e it � t β i + βt β − 1 + β ( β − 1) t β − 2 � + ... fails! (reason 1.) i 2 i 3 7

  8. Function space z ( t ) = z k ( t ) g ( t ) g ( t ) = 1 + ˜ g ( t ) z ( t ) = ˜ ˜ g ( t ) z k ( t ) . , , * Idea: use truncated asymptotic series ansatz: M � a m t − m + (1 + t ) − M r ( t ) ˜ g ( t ) = χ ( t ) j =1 M � = ˜ g m ( t ) + ˜ g M +1 ( t ) ∗ j =1 r ∈ H S a j ∈ C , ( S large) χ ( t ) smooth function, = 1 near t = ∞ , = 0 near t ∈ [ −∞ , 0]. Determine a 1 , then a 2 , then a 3 , ... as before, but r determined by iteration. For N large, will have a m , r small. 8

  9. Approach: express problem as ( F nonlinear C 1 operator; z, F ( z ) ∈ Banach spaces) F ( z ) = 0 Solve by quasi-Newton iteration z ← K ( z ) := z − A − 1 F ( z ) A − 1 “approximate inverse” for F ′ ( z ). � � A − 1 � �� | K ( z ) − K ( w ) | = | z − w − A − 1 ( F ( z ) − F ( w )) | = � � A ( z − w ) − ( F ( z ) − F ( w ) � � � ≤ | A − 1 | � A ( z − w ) − F ′ ( z )( z − w ) + F ′ ( z )( z − w ) − ( F ( z ) − F ( w )) � � � � � ≤ | A − 1 | | A − F ′ ( z ) || z − w | + | F ( w ) − F ( z ) − F ′ ( z )( w − z ) | = | A − F ′ ( z ) | O ( z − w ) + o ( z − w ) If A ≈ F ′ ( z ) and | z − w | small, then for some 0 ≤ L< 1 ≤ L | z − w | , Iteration map K is uniform contraction, Banach fixed point theorem: converges to fixed point z = K ( z ) so that F ( z ) = 0. 9

  10. Motivation for truncated series ansatz: M � a m t − m + t − M r ( t ) z ( t ) = z k ( t ) g ( t ) , D ∋ g = 1 + (at t ≈ ∞ ) m =1 To find “rest” r ∈ H S have to solve G ( t − M r ) = 0 for some nonlinear operator (self-similar Birkhoff-Rott) G : D → R . Need G ′ (0) isomorphism: G ′ (0) − 1 : R → D ⇒ R must enforce sufficient decay in t , say O ( t − M + O (1) ). 0 = G ( t − M r ) = G (0) + G ′ (0)[ t − M r ] + G ′′ (0) [ t − M r, t − M r ] + ... 2 For large N , G ′′ (0) integral operator with near-diagonal kernel: G ′′ (0)[ t − M r, t − M r ] = O ( t − 2 M + O (1) ) . If M large, 2 M ≫ M + O (1): nonlinear terms allow wasteful analysis. ⇒ essential difficulty is only linear ! 10

  11. Integral expansion � ∞ � ∞ � ∞ s − 2 µ ds s − 2 µ ds s − 2 µ ds z = z k +˜ z p.v. A p z ( t ) − u p z ( s ) = p.v. A p = p.v. A p ∆ z ∆ z k + ∆˜ z 0 0 0 For N large, due to smallness | ∆˜ z | < | ∆ z k | . � ∞ ∞ z ) j (∆˜ � (∆ z k ) j +1 s − 2 µ ds ( − 1) j p.v. = A p 0 j =0 M +1 � (˜ z = ˜ z m , ˜ z k = ˜ g m z k ) m =1 � ∞ � ∞ ( � M +1 z m ) j z ) j (∆˜ m =1 ∆˜ (∆ z k ) j +1 s − 2 µ ds = p.v. s − 2 µ ds p.v. A p A p (∆ z k ) j +1 0 0 � ∞ �� M +1 z m ) α ( m ) � j m =1 (∆˜ � s − 2 µ ds = p.v. A p (∆ z k ) j +1 α 0 | α | = j 11

  12. g m z k , | α | = � M +1 Integral expansion (2): ˜ z m = ˜ m =1 α ( m ), z m ( t ) − u p ˜ g m ( t ) z k ( t ) − u p ˜ ∆˜ z m = ˜ z m ( s ) = ˜ g m ( s ) z k ( s ) � � � � z k ( t ) − u p z ( s ) u p z ( s ) = ˜ g m ( t )∆ z k + u p z ( s )∆ g m = ˜ g m ( t ) + ˜ g m ( t ) − ˜ g m ( s ) � ∞ � M +1 z m ) α ( j ) m =1 (∆˜ s − 2 µ ds p.v. A p (∆ z k ) j +1 0 � α ( j ) � � M +1 g m ( t )∆ z k + u p z k ( s )∆˜ � ∞ ˜ g m ( s ) m =1 s − 2 µ ds = p.v. A p (∆ z k ) j +1 0 � ∞ � M +1 m =1 ( u p z k ( s )∆˜ g m ) β ( m ) (˜ g m ( t )∆ z k ) α ( m ) − β ( m ) � α � � s − 2 µ ds = p.v. A p (∆ z k ) j +1 β 0 β ≤ α � ∞ M +1 � M +1 g m ) β ( m ) m =1 (∆˜ | α | = j � g m ( t ) α ( m ) − β ( m ) p.v. A p ( u p z k ( s )) | β | s − 2 µ ds � ˜ (∆ z k ) 1+ | β | 0 m =1 12

  13. Integral expansion (3): have expanded velocity integral into series of integrals like � ∞ � M +1 g m ) β ( m ) m =1 (∆˜ s − 2 µ ds A p ( u p z k ( s )) | β | p.v. (∆ z k ) 1+ | β | 0 | β | = 0: constant part � ∞ 1 s − 2 µ ds p.v. A p ∆ z k 0 | β | = 1: linear parts � ∞ A p u p z k ( s ) ∆˜ g m (∆ z k ) 2 s − 2 µ ds p.v. 0 | β | = 2 , 3 , ... : quadratic and higher parts like � ∞ A p ( u p z k ( s )) 2 ∆˜ g m ∆˜ g ℓ (∆ z k ) 3 s − 2 µ ds p.v. 0 13

  14. Key difficulty: spiral rollup. With Kaden approximation z k ( t ) = (2 πt ) − µ e iθ , typical linearized operator like � ∞ ˜ z ( t ) − ˜ z ( s ) [ t − µ exp( it ) − u p s − µ exp( is )] 2 s − 2 µ ds p.v. A p 0 Key problem: near-singularity whenever (e.g.) p = 0, s ≈ t + 2 πk ( k ∈ Z ) . 1. Spiral must not self-intersect 2. delicate cancellations (left, right side of each turn) must not be upset. 14

  15. Analogies in elliptic PDE ( a ij ) = A = A ( x ) continuous Variable coefficients = constant coefficients + small ∂ 2 ∂ 2 ∂ 2 � � � � � f = u − a ij ( x ) u = u − a ij (0) + a ij ( x ) − a ij (0) u u ∂x i ∂x j ∂x i ∂x j ∂x i ∂x j i,j i,j i,j � �� � small for x ≈ 0 � �� � L 0 u : constant coeff. ∂ 2 � ∧ � � � � � u ∧ ( ξ ) u − a ij (0) u ( ξ ) = 1 + a ij (0) ξ i ξ j ∂x i ∂x j i,j i,j � �� � σ ( ξ ) Elliptic means σ ( ξ ) invertible ⇒ Fourier transform to invert operator: : H s → H s +2 u ∧ ( ξ ) = σ ( ξ ) − 1 g ∧ ( ξ ) L − 1 L 0 u = g ⇒ , 0 ∞ ( L 0 + E ) − 1 = L − 1 � ( EL − 1 0 ) j ( L 0 + E ) u = f, 0 j =0 1 0 � so that � EL − 1 0 � ≤ � E � · � L − 1 converges if � E � < 0 � < 1. � L − 1 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend