math 211 math 211
play

Math 211 Math 211 Lecture #29 Phase Plane Portraits Systems of - PowerPoint PPT Presentation

1 Math 211 Math 211 Lecture #29 Phase Plane Portraits Systems of Higher Dimension November 4, 2002 2 Planar System x = A x Planar System x = A x Equilibrium points for the system Set of equilibrium points equals null( A ) .


  1. 1 Math 211 Math 211 Lecture #29 Phase Plane Portraits Systems of Higher Dimension November 4, 2002

  2. 2 Planar System x ′ = A x Planar System x ′ = A x • Equilibrium points for the system � Set of equilibrium points equals null( A ) . � A nonsingular ⇒ only equilibrium point is 0 . • Can we list the types of all possible equilibrium points for planar linear systems? � We will do the six most important cases. � Look at solution curves in the phase plane. Return

  3. 3 Distinct Real Eigenvalues Distinct Real Eigenvalues • p ( λ ) = λ 2 − Tλ + D with T 2 − 4 D > 0 . √ √ T 2 − 4 D T 2 − 4 D λ 1 = T − < λ 2 = T + 2 2 • Eigenvectors v 1 and v 2 . General solution x ( t ) = C 1 e λ 1 t v 1 + C 2 e λ 2 t v 2 • λ 1 < 0 < λ 2 Saddle point. • λ 1 < λ 2 < 0 Nodal sink. • 0 < λ 1 < λ 2 Nodal source. Return Plan

  4. 4 Complex Eigenvalues Complex Eigenvalues • p ( λ ) = λ 2 − Tλ + D with T 2 − 4 D < 0 λ = α + iβ λ = α − iβ. and • Eigenvector w = v 1 + i v 2 associated to λ . • General solution x ( t ) = C 1 e αt [cos βt · v 1 − sin βt · v 2 ] + C 2 e αt [sin βt · v 1 + cos βt · v 2 ] • α = Re( λ ) = 0 Center. • α = Re( λ ) < 0 Spiral sink. • α = Re( λ ) > 0 Spiral source. Return

  5. 5 Planar Systems Planar Systems � a 11 a 12 � A = a 21 a 22 • The characteristic polynomial is p ( λ ) = λ 2 − Tλ + D . where � T = tr A = a 11 + a 22 and � D = det A = a 11 a 22 − a 12 a 21 . • The eigenvalues are √ T 2 − 4 D λ 1 , λ 2 = T ± . 2 Return

  6. 6 • λ 1 & λ 2 are the roots of p ( λ ) = λ 2 − Tλ + D , so p ( λ ) = ( λ − λ 1 )( λ − λ 2 ) = λ 2 − ( λ 1 + λ 2 ) λ + λ 1 λ 2 • Hence, T = λ 1 + λ 2 and D = λ 1 λ 2 . • Duality between ( λ 1 , λ 2 ) and ( T, D ) . • We will represent a system by the location of ( T, D ) in the TD -plane — the trace-determinant plane. Return

  7. 7 Trace-Determinant Plane Trace-Determinant Plane • T 2 − 4 D > 0 � ⇒ distinct real eigenvalues λ 1 & λ 2 � D = λ 1 λ 2 < 0 ⇒ Saddle point. � D = λ 1 λ 2 > 0 ⇒ Eigenvalues have the same sign. ◮ T = λ 1 + λ 2 > 0 ⇒ Nodal source. ◮ T = λ 1 + λ 2 < 0 ⇒ Nodal sink. Return Duality

  8. 8 • T 2 − 4 D < 0 ⇒ complex eigenvalues λ = α + iβ λ = α − iβ. and � T = λ + λ = 2 α > 0 ⇒ Spiral source. � T = λ + λ = 2 α < 0 ⇒ Spiral sink. � T = λ + λ = 2 α = 0 ⇒ Center. Return Duality TD plane

  9. 9 Types of Equilibrium Points Types of Equilibrium Points • Generic types � Saddle, nodal source, nodal sink, spiral source, and spiral sink. � All occupy large open subsets of the trace-determinant plane. • Nongeneric types � Center and many others. Occupy pieces of the boundaries between the generic types. Return

  10. 10 Higher Dimensional Systems Higher Dimensional Systems x ′ = A x • A is a real n × n matrix. • If λ is an eigenvalue and v � = 0 is an associated eigenvector, then x ( t ) = e λt v is a solution. • Much like the planar case, but now we need n linearly independent solutions. • We no longer have the easy way to compute the characteristic polynomial p ( λ ) = det( A − λI ) . Return

  11. 11 Suppose that λ 1 , . . . , λ k are distinct Proposition: eigenvalues of A , and that v 1 , . . . , v k are associated nonzero eigenvectors. Then v 1 , . . . , v k are linearly independent. Suppose the n × n real matrix A has n Theorem: distinct eigenvalues λ 1 , . . . , λ n , and that v 1 , . . . , v n are associated nonzero eigenvectors. Then the exponential solutions x i ( t ) = e λ i t v i , 1 ≤ i ≤ n form a fundamental set of solutions for the system x ′ = A x . Return

  12. 12 Examples: Examples: − 2 3 − 4   • A = 0 1 0   0 4 − 1 17 − 30 − 8   • A = 16 − 29 − 8   − 12 24 7 � Use M ATLAB . Return

  13. 13 Complex Eigenvalues Complex Eigenvalues A a real n × n matrix with a complex eigenvalue λ and associate eigenvector w . • ⇒ λ is an eigenvalue and w is an associated nonzero eigenvector. • Complex valued solutions: z ( t ) = e λt w z ( t ) = e λt w . • Real solutions: x ( t ) = Re( z ( t )) y ( t ) = Im( z ( t )) . Return

  14. 14 Example Example 21 10 4   A = − 70 − 31 − 10   30 10 − 1 • The theorem applies if some of the eigenvalues are complex and we replace complex conjugate pairs of solutions by their real and imaginary parts. Return

  15. 15 Repeated Eigenvalues – Example 1 Repeated Eigenvalues – Example 1 − 5 − 10 6   A = 8 19 − 12   12 30 − 19 • p ( λ ) = ( λ + 3)( λ + 1) 2 • λ 1 = − 3 � Eigenspace has dimension 1 ⇒ one exponential solution x 1 ( t ) = e − 3 t ( − 1 / 3 , 2 / 3 , 1) T Return Example 1a Example 2 Example 2a Analysis

  16. 16 • λ 2 = − 1 � Eigenspace has dimension 2 ⇒ two linearly independent exponential solutions � Eigenspace has basis v 2 = ( − 5 / 2 , 1 , 0) T and v 3 = (3 / 2 , 0 , 1) T . � Linearly independent solutions − 5 / 2 3 / 2     x 2 ( t ) = e − t x 3 ( t ) = e − t 1 0 &     0 1 • x 1 , x 2 , and x 3 are a fundamental set of solutions. Return Example 1 Example 2 Example 2a Analysis

  17. 17 Repeated Eigenvalues – Example 2 Repeated Eigenvalues – Example 2 1 2 − 1   A = − 4 − 7 4   − 4 − 4 1 • p ( λ ) = ( λ + 3)( λ + 1) 2 • λ 1 = − 3 � Eigenspace has dimension 1 ⇒ one exponential solution x 1 ( t ) = e − 3 t ( − 1 / 2 , 3 / 2 , 1) T Return Example 1 Example 1a Example 2a Analysis

  18. 18 • λ 2 = − 1 � Eigenspace has dimension 1 ⇒ only one exponential solution − 1 / 2   x 2 ( t ) = e − t 1   1 • Need a third solution. • Need a new idea. Return Example 1 Example 1a Example 2 Analysis

  19. 19 Multiplicities Multiplicities A an n × n matrix • Distinct eigenvalues λ 1 , . . . , λ k . • The characteristic polynomial is p ( λ ) = ( λ − λ 1 ) q 1 ( λ − λ 2 ) q 2 · . . . · ( λ − λ k ) q k . • The algebraic multiplicity of λ j is q j . • The geometric multiplicity of λ j is d j , the dimension of the eigenspace of λ j . Return Example 1 Example 1a Example 2 Example 2a

  20. 20 • We always have: � q 1 + q 2 + · · · + q k = n . � 1 ≤ d j ≤ q j . � There are d j linearly independent exponential solutions corresponding to λ j . � If d j = q j for all j we have n linearly independent solutions. • If d j < q j we have trouble. Return Example 1 Example 1a Example 2 Example 2a

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend