evaluation of hydrogen evaluation of hydrogen production
play

EvaluationofHydrogen EvaluationofHydrogen ProductionCyclesBased - PowerPoint PPT Presentation

EvaluationofHydrogen EvaluationofHydrogen ProductionCyclesBased ProductionCyclesBased onEfficiency onEfficiency ChE4273 ChE4273 SeniorDesign SeniorDesign Spring2007


  1. Evaluation�of�Hydrogen� Evaluation�of�Hydrogen� Production�Cycles�Based� Production�Cycles�Based� on�Efficiency on�Efficiency Ch�E�4273 Ch�E�4273 Senior�Design Senior�Design Spring�2007 Spring�2007

  2. Purpose Purpose Develop�and�implement�a�method� Develop�and�implement�a�method� of�ranking�water# #splitting�cycles� splitting�cycles� of�ranking�water

  3. Outline Outline � Importance�of�Hydrogen Importance�of�Hydrogen � � Thermochemical/Hybrid�Cycles� Thermochemical/Hybrid�Cycles� � � Current�Methods�of�Evaluation Current�Methods�of�Evaluation � � Our�Methodology�based�on�Efficiency Our�Methodology�based�on�Efficiency � � Results Results �

  4. Hydrogen�Economy Hydrogen�Economy � Advantages Advantages � � Disadvantages Disadvantages � � Methods�for�producing�hydrogen Methods�for�producing�hydrogen � � Other�suggested�economy�types Other�suggested�economy�types �

  5. Hydrogen�Economy Hydrogen�Economy � The�current�U.S.�demand� The�current�U.S.�demand� † � – 11�MM�tons/yr�total 11�MM�tons/yr�total – � Crude�lightening Crude�lightening � � Produce�cleaner Produce�cleaner# #burning�fuels burning�fuels � � Methanol/Ammonia�production Methanol/Ammonia�production � – Steam�reformation�of�methane Steam�reformation�of�methane – � Demand�in�Hydrogen�Economy� Demand�in�Hydrogen�Economy� † � – 200�MM�tons/yr�for�transportation 200�MM�tons/yr�for�transportation – – 450�MM�tons/yr�for�all�other�energy�needs 450�MM�tons/yr�for�all�other�energy�needs – � ����������������������������������������������

  6. Water# #Splitting�Cycles Splitting�Cycles Water � � ⇔ + � � � � � � � � ����� ��!�����������!��������!��"���� � �����������������#���� � ������� ������$������!�%���&!�#������� ������������������'�$$�����

  7. Water�Splitting�Cycles Water�Splitting�Cycles � Thermochemical�Cycles Thermochemical�Cycles � – Thermochemical�reactions�only Thermochemical�reactions�only – � Hybrid�Cycles Hybrid�Cycles � – Thermochemical�reactions Thermochemical�reactions – – Electrochemical�reactions Electrochemical�reactions – � Some�could�benefit�from�nuclear�plant�heat� Some�could�benefit�from�nuclear�plant�heat� � sources sources � Over�200�known�cycles Over�200�known�cycles �

  8. Water�Splitting�Cycles Water�Splitting�Cycles � Thermochemical�Reactions Thermochemical�Reactions � – Established�equipment�in�industry Established�equipment�in�industry – – Often�require�high�temperatures Often�require�high�temperatures – � Electrochemical�Reactions Electrochemical�Reactions � – More�rare�in�industry More�rare�in�industry – – Difficult�to�implement Difficult�to�implement – – Occur�at�lower�temperatures Occur�at�lower�temperatures –

  9. Water�Splitting�Cycle�Examples Water�Splitting�Cycle�Examples � Hallett�Air�Products�(hybrid) Hallett�Air�Products�(hybrid) � � +   →  + ���� � �� � � � ��� � � � � �   →  + ��� � � ��� �� � � � � US�Chlorine�(thermochemical) US�Chlorine�(thermochemical) � � +   →  + ���� � �� � � � ��� � � � � �   →  + ��� � � ���� � ���� �� � � +   →  + ��� � � ���� � ��� � ���� � � �

  10. Water�Splitting�Cycle�Example Water�Splitting�Cycle�Example Hallett�Air�Products�(hybrid) Hallett�Air�Products�(hybrid)

  11. Water�Splitting�Cycle�Example Water�Splitting�Cycle�Example US�Chlorine�(thermochemical) US�Chlorine�(thermochemical)

  12. Issues Issues � Coupled�reactions Coupled�reactions � – Cyclic�Process Cyclic�Process# # Degrees�of�freedom Degrees�of�freedom – � Special�reaction�methods�(high� Special�reaction�methods�(high� � � G>0) G>0) � – Electrolysis� Electrolysis� – – Continuous�product�removal Continuous�product�removal – � Reaction�Equilibrium Reaction�Equilibrium � – Reversibility Reversibility – – Equilibrium�conversion Equilibrium�conversion – � Separation�Energy�(heat�and�work)�may� Separation�Energy�(heat�and�work)�may� � complicate�the�flowsheet flowsheet complicate�the�

  13. Prior�Evaluation�Efforts Prior�Evaluation�Efforts � L.C.�Brown�(2000,�DOE)�scored�cycles� L.C.�Brown�(2000,�DOE)�scored�cycles� � based�on�known�characteristics based�on�known�characteristics – Qualitative�approach Qualitative�approach – – Questionable�evaluation�technique Questionable�evaluation�technique – � Point�system�for�process�complexities Point�system�for�process�complexities � � Equal�weighting�assigned�to�all�criteria Equal�weighting�assigned�to�all�criteria � � “Judgment�call”�basis “Judgment�call”�basis � � Heavily�favors�well Heavily�favors�well# #researched�cycles researched�cycles �

  14. Prior�Evaluation�Efforts Prior�Evaluation�Efforts

  15. Prior�Evaluation�Efforts Prior�Evaluation�Efforts � Lewis�(2005,�DOE)�evaluated�cycles�based� Lewis�(2005,�DOE)�evaluated�cycles�based� � on�efficiency on�efficiency – Quantitative�approach Quantitative�approach – – Considers�equilibrium Considers�equilibrium – – Assumes�50%�efficiency�for�all�work�processes Assumes�50%�efficiency�for�all�work�processes – � Actual�efficiency�may�be�better�or�worse Actual�efficiency�may�be�better�or�worse � � Different�processes�have�different�efficiencies Different�processes�have�different�efficiencies �

  16. Our�Proposed�Solution Our�Proposed�Solution Efficiency�Based�Ranking�System: Efficiency�Based�Ranking�System: � Find�maximum�possible�efficiency Find�maximum�possible�efficiency � – Pinch�technology�to�determine�hot�utility Pinch�technology�to�determine�hot�utility – � Stream�analysis Stream�analysis � � Heat�of�reaction Heat�of�reaction � – Estimate�work�required Estimate�work�required – � Consider�reaction�equilibrium Consider�reaction�equilibrium � � DOF:�optimize�flow�rates�and� DOF:�optimize�flow�rates�and� � temperatures temperatures

  17. Cycle�Efficiency Cycle�Efficiency ( ) � ° � ��� � � � η = − � + � � � Enthalpy�of�formation�of�water�is�minimum� Enthalpy�of�formation�of�water�is�minimum� � energy�required�for�water# #splitting splitting energy�required�for�water

  18. Cycle�Efficiency Cycle�Efficiency � Only�heat�and�work�transferred�across� Only�heat�and�work�transferred�across� � system�boundary�included system�boundary�included � Heat�term Heat�term � – Hot�utility Hot�utility – – Heat�for�separations Heat�for�separations – � Work�term� Work�term� � – Pump/compressor�work Pump/compressor�work – – Electrical�work�in�electrolysis Electrical�work�in�electrolysis –

  19. Equilibrium Equilibrium ( ) ∑ � = ν � ° + � �� �� � � � � Setting� � G RXN equal�to�zero�gives�the�following, � °   � = −   � ��� ��� ��  ��  ∏ ν = � � � �� �

  20. Equilibrium Equilibrium � Sulfur�Iodine� Sulfur�Iodine�– – Reaction�1�(1123�K) Reaction�1�(1123�K) � �   →  + + ���� � � �� � � � �� � � � � � � � � � � � � � � � � � � ⋅ � � � � � � � � � �� � � � = � � � � � � � � � + + + � � � � � � � � � � � �� � �� �� � � � � � � � � � � � Relate�number�of�moles�to�conversion� Relate�number�of�moles�to�conversion� � ⇒ = � � � � � � � � � � � � n i =�n n i,o +� ν ν i X i n i =� i,o +� i X i � �

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend