evaluating storage technologies for solar and wind energy
play

Evaluating storage technologies for solar and wind energy Jessika - PowerPoint PPT Presentation

Evaluating storage technologies for solar and wind energy Jessika E. Trancik MIT Institute for Data, Systems, and Society March 5, 2017 Andlinger Center Highlight Seminar Series Princeton University 7000 600 a b 6000 500 Cumulative GW P


  1. Evaluating storage technologies for solar and wind energy Jessika E. Trancik MIT Institute for Data, Systems, and Society March 5, 2017 Andlinger Center Highlight Seminar Series Princeton University

  2. 7000 600 a b 6000 500 Cumulative GW P Nuclear Cumulative GW P Fossil 5000 400 4000 300 Actual Actual 3000 IEA 2006 IEA 2006 IEA 2008 IEA 2008 200 IEA 2009 IEA 2009 2000 IEA 2010 IEA 2010 Fossil Nuclear IEA 2011 IEA 2011 100 IEA 2012 IEA 2012 1000 IEA 2013 IEA 2013 IEA 2014 IEA 2014 0 0 2000 2005 2010 2015 2020 2025 2030 2035 2000 2005 2010 2015 2020 2025 2030 2035 1200 600 c d Actual Actual Cumulative GW P Solar (PV + CSP) IEA 2006 IEA 2014 EIA 2013 1000 500 IEA 2008 IEA 2013 EIA 2011 Cumulative GW P Wind IEA 2009 IEA 2012 EIA 2010 IEA 2010 IEA 2011 IEA 2011 IEA 2010 800 400 IEA 2012 IEA 2009 IEA 2013 IEA 2008 IEA 2014 IEA 2006 600 300 400 200 Wind Solar 200 100 0 0 2000 2005 2010 2015 2020 2025 2030 2035 2000 2005 2010 2015 2020 2025 2030 2035 Trancik, Brown, Jean, Kavlak, Klemun, Edwards, McNerney, Miotti, Mueller, Needell, Technical Report, 2015

  3. 500 World Region Max Max Central Central Min Min 400 Coal Natural Wind Solar LCOE [$/MWh] gas (PV) 300 200 100 0 Coal (world) Coal + CCS (world) Coal + Ctax (world) Coal (China) Coal (USA) Coal (Australia) Coal (UK) Coal + CCS (USA) NGCC (world) NGCC + CCS (world) NGCC + Ctax (world) NGCC (USA) NGCC (Australia) NGCC (UK) NGCC (Japan) NGCC + CCS (USA) Wind onshore (worl) Wind onshore (China, India) Wind onshore (USA) Wind onshore (Europe) Wind onshore (Africa) PV utility (world) PV (China, India) PV (South America) PV (USA) PV (Europe) PV (Africa) PV (Middle East) Trancik, Brown, Jean, Kavlak, Klemun, Edwards, McNerney, Miotti, Mueller, Needell, Technical Report, 2015

  4. Modeling energy systems performance performance trends targets performance time technology design to accelerate low-carbon technology development

  5. Fundamental insight + tools to inform decisions: - engineers - private investors - policy makers (R&D, regulations)

  6. Research areas • Determinants of the rate of technological improvement • Adoption potential of technologies evaluated against energy demand dynamics • Emissions impacts of energy technologies evaluated against climate targets

  7. Research areas • Determinants of the rate of technological improvement • Adoption potential of technologies evaluated against energy demand dynamics • Emissions impacts of energy technologies evaluated against climate targets

  8. How much improvement needed in energy storage technologies? • Example 1: Evaluate stationary storage cost structures against electricity demand, prices and resource availability • Example 2: Evaluate mobile battery specific energy against personal vehicle travel patterns

  9. Role of storage technologies for renewable energy • Wind, solar resources are intermittent • Storage can be used to: • Match renewables supply to demand • Increase renewable plant revenue For background see: D. Rastler, EPRI, Dec. 2010; Bob West E. Hittinger, J.F. Whitacre, J. Apt, J. Power Sources , 206, 2012 S. Sundararagavan, E. Baker, Solar Energy , 2012

  10. Role of storage technologies for renewable energy • Wind, solar resources are intermittent • Storage can be used to: • Match renewables supply to demand • Increase renewable plant revenue For background see: D. Rastler, EPRI, Dec. 2010; Bob West E. Hittinger, J.F. Whitacre, J. Apt, J. Power Sources , 206, 2012 S. Sundararagavan, E. Baker, Solar Energy , 2012

  11. Evaluating storage techs for solar and wind energy • How to compare diverse storage technologies on a single scale? Braff, Mueller, Trancik, Nature Climate Change 2016

  12. Moving beyond lists of attributes... Storage technologies. L/A battery Li-ion battery NaS battery VRB flow battery Energy storage capacity (kW h) 6 100 6 10 6 100 20–50 Typical power output (MW) 1–100 0.1–5 5 0.01–10 Energy density (W h/L) 50–80 200–500 150–250 16–33 Power density (W/L) 10–400 0 0 0 Discharge duration Hours Minutes–hours Hours 2–8 h Charge duration Hours Minutes–hours Hours 2–8 h Response time <Seconds Seconds Milliseconds <Seconds Lifetime (years) 3–10 10–15 15 5–20+ Lifetime (cycles) 500–800 2000–3000 4000–40,000 1500–15,000 Roundtrip efficiency (%) 70–90% 85–95% 80–90% 70–85% Capital cost per discharge ($/kW) $300–$800 $400–$1000 $1000–$2000 $l200–$2000 Capital cost per capacity $150–$500 $500–$1500 $125–$250 $350–$800 ($/kW h) Power quality p p Transient stability p Ancillary services Regulation p p p Spinning reserves p p p p Voltage control p p p Castillo and Gayme, 2014

  13. Evaluating storage techs for solar and wind energy • How to compare diverse storage technologies on a single scale? • At what costs do storage technologies add value to renewables? • How do current devices compare to these targets? • How to optimally improve future storage technologies? Braff, Mueller, Trancik, Nature Climate Change 2016

  14. Consider three locations, two energy resources • Consider wind and solar at three sites: • Barnstable, MA • McCamey, TX • Palm Springs, CA • Datasets: • Hourly real-time electricity pricing (ISONE, ERCOT, CAISO) • Hourly generation of solar and wind plants

  15. Manage storage to maximize revenue

  16. Manage storage to maximize revenue revenue wind, solar resource N X R total = max( P ( t )( x generation ( t ) + x discharge ( t ) − x charge ( t ) / η )) t =0 − subject to: electricity price subject to: { 0 ≤ x discharge ≤ ˙ power capacity E max constraint 0 ≤ x charge ≤ min( η x generation ( t ) , η ˙ E max ) N { energy capacity ( x charge ( t ) − x discharge ( t )) ≤ h ˙ X 0 ≤ E max . constraint t =0

  17. Managing storage to maximize revenue Summer Fall 2 2 2 Solar and wind plant output 1 1 1 (with storage) 0 0 0 Solar and wind 1 1 1 plant output (no storage) 0 0 0 100 100 100 Electricity 50 50 50 price 0 0 0 1 2 3 0 1 2 3 0 Days Days Braff, Mueller, Trancik, Nature Climate Change 2016 � � � � � � � � � �

  18. Spring Summer Fall Winter MW/MW Installed 2 2 2 2 1.5 1.5 1.5 1.5 Texas 1 1 1 1 0.5 0.5 0.5 0.5 0 0 0 0 1 1 1 1 0.5 0.5 0.5 0.5 Solar Out 0 0 0 0 200 200 200 200 Wind Out $/MWh 100 100 100 100 0 0 0 0 0 2 4 0 2 4 0 2 4 0 2 4 Solar Gen Wind Gen MW/MW Installed 2 2 2 2 Price 1.5 1.5 1.5 1.5 1 1 1 1 0.5 0.5 0.5 0.5 Mass 0 0 0 0 1 1 1 1 0.5 0.5 0.5 0.5 0 0 0 0 100 100 100 100 $/MWh 50 50 50 50 0 0 0 0 0 2 4 0 2 4 0 2 4 0 2 4 Days Days Days Days MW/MW Installed 2 2 2 2 1.5 1.5 1.5 1.5 1 1 1 1 California 0.5 0.5 0.5 0.5 0 0 0 0 1 1 1 1 0.5 0.5 0.5 0.5 0 0 0 0 100 100 100 100 $/MWh 50 50 50 50 0 0 0 0 0 2 4 0 2 4 0 2 4 0 2 4 Days Days Days Days

  19. MA Wind 0MWh/MW gen 4MWh/MW gen Probability Density 16MWh/MW gen 0.04 MA solar 0.03 0.02 0.01 MA Solar Probability Density 0.04 MA wind 0.03 0.02 0.01 0 0 20 40 60 80 100 120 Price ($/MWh)

  20. Balancing the cost and benefit of storage annual revenue • Value of energy storage R total χ = . CRF ( C gen + ˙ E max ( C power storage + hC energy storage )) hours wind, solar cost annualization storage power factor storage cost • Storage system sized to maximize chi

  21. � Wind Capacity Cost: $1/W � max � Location: McCamey, Texas 2.4 Wind 2.4 2.2 $1/W Power Cost ($/kW) � 150 1 Storage Power 2 Capacity Cost 1.8 ($/kW) Texas 100 1 1.6 . 6 1 . 2.0 1.4 50 8 1.2 profitability profitability threshold threshold 50 100 150 1 Energy Cost Storage Energy Power Cost ($/kW) 0.8 ($/kWh) Capacity Cost 0.6 ($/kWh) 0.4 150

  22. Wind � max $1/W $2/W $3/W Power Cost ($/kW) � 2.4 150 1 2.4 Texas 100 0.9 0.7 2.2 1.6 1.0 1 . 2.0 0.8 50 8 1.1 0.9 2 0 0 1.8 Power Cost ($/kW) 150 0 Massachusetts 1.6 100 1.4 0.8 1.5 0.6 50 1.6 0.9 0.7 1.2 profitability threshold 1 Power Cost ($/kW) 150 0.6 0 California 0.8 . 0 8 100 . 6 1.5 0 1 . 0.6 1 9 . 0 6 1 . 50 . 7 . 0 7 0 . 8 1 0.4 0 8 50 100 150 50 100 150 50 100 150 Energy Cost Energy Cost Energy Cost ($/kWh) ($/kWh) ($/kWh) Braff, Mueller, Trancik, Nature Climate Change 2016

  23. Storage technologies compared to value-adding cost thresholds 1200 4000 Texas Wind Power Cost ($/kW) $3/W PHS 3000 $2/W $1/W Na/S 1000 $0.5/W PHS 2000 CAES Lead-acid CAES Ni/Cd 1000 Na/S 800 Lead-acid Power Cost ($/kW) CAES Li-Ion 0 Zn/Br 0 1000 2000 V-redox Energy Cost ($/kWh) 600 PHS 6000 V-redox Power Cost ($/kW) Zn/Br 400 4000 Lead-acid 200 2000 Li-Ion Ni/Cd 0 0 0 200 400 600 800 1000 0 1000 2000 3000 Energy Cost ($/kWh) Energy Cost ($/kWh) PHS: pumped hydro storage CAES: compressed air energy storage Braff, Mueller, Trancik, Nature Climate Change 2016

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend